
NAVAL POSTGRADUATE SCHOOL
MONTEREY, CALIFORNIA

1W9112« 080
THESIS

ANALYZING THE INTEL PENTIUM'S CAPABILITY TO
SUPPORT A SECURE VIRTUAL MACHINE MONITOR

by

John Scott Robin

September 1999

Thesis Advisor:
Second Reader:

Cynthia Irvine
Steven B. Lipner

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 4

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources,
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188) Washington DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE
September 1999

3. REPORT TYPE AND DATES COVERED
Master's Thesis

4. TITLE AND SUBTITLE ANALYZING THE INTEL PENTIUM'S
CAPABILITY TO SUPPORT A SECURE VIRTUAL MACHINE
MONITOR

6. AUTHOR(S) Robin, John S.

FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the
official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (maximum 200 words)
This thesis addresses the problem of implementing secure virtual machine monitors (VMM) on the Intel

Pentium architecture. A VMM allows multiple operating systems to run concurrently under virtual machines on a single
workstation. High-assurance VMMs could allow complete isolation of, or data sharing between, virtual machines
according to a security policy such as a mandatory secrecy policy.

The Intel architecture was mapped to a set of hardware requirements for VMMs. It was found that the Intel
architecture was not virtualizable. However, several techniques are presented that allow the Intel architecture to support
a "virtual VMM." A commercial virtual VMM was studied and found to be unable to support secure VMMs.
Therefore, a foundation upon which a secure VMM could be built for the Intel Pentium architecture is presented.

A secure VMM for the Intel architecture offers several benefits. First, PC users could work in a more secure
environment. Second, PC users could run familiar COTS operating systems and applications. Finally, secure VMMs
could save the DoD millions of dollars by eliminating the need for separate systems when both high assurance, and
COTS operating systems and applications are required.

14. SUBJECT TERMS Virtual Machines, Virtual Machine Monitors, Intel Architecture,
Multilevel Security, Intel Pentium

15. NUMBER
PAGES

OF

113

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT

Unclassified

18. SECURITY CLASSIFI-
CATION OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICA-
TION OF ABSTRACT

Unclassified

20. LIMITATION
ABSTRACT

UL

OF

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18 298-102

Approved for public release; distribution is unlimited.

ANALYZING THE INTEL PENTIUM'S CAPABILITY TO SUPPORT A
SECURE VIRTUAL MACHINE MONITOR

John Scott Robin
Second Lieutenant, United States Air Force

B.S., United States Air Force Academy, 1998

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1999

Author:

Approved by:

¥- %a$ K/f*^
John Scott Robin

^
,'7T^u. <r. cy^v»*^

Cynthia Irvine, Thesis Advisor

■ < <l »<■
ven BXipner, Thesis Second Reader

r, Chairman Dan Boger,
Department of Electrical and Computer Engineering

111

IV

ABSTRACT

This thesis addresses the problem of implementing secure virtual machine monitors
(VMM) on the Intel Pentium architecture. A VMM allows multiple operating systems to
run concurrently under virtual machines on a single workstation. High-assurance VMMs
could allow complete isolation of, or data sharing between, virtual machines according to a
security policy such as a mandatory secrecy policy.

The Intel architecture was mapped to a set of hardware requirements for VMMs. It
was found that the Intel architecture was not virtualizable. However, several techniques are
presented that allow the Intel architecture to support a "virtual VMM." A commercial
virtual VMM was studied and found to be unable to support secure VMMs. Therefore, a
foundation upon which a secure VMM could be built for the Intel Pentium architecture is
presented.

A secure VMM for the Intel architecture offers several benefits. First, PC users
could work in a more secure environment. Second, PC users could run familiar COTS
operating systems and applications. Finally, secure VMMs could save the DoD millions of
dollars by eliminating the need for separate systems when both high assurance, and COTS
operating systems and applications are required.

v

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

B. GOALS OF THE THESIS 2

C. VIRTUAL MACHINE MONITORS 2
1. Benefits of Virtual Machine Monitors 2
2. Characteristics and Layers of a VMM 4
3. Logical VMM Modules 5

D. THESIS ORGANIZATION 5

II. TYPES OF VIRTUAL MACHINE MONITORS 7

A. TYPE I VMM 11

B. TYPE II VMM 12

C. HYBRID VMM 14

III. CAN THE INTEL ARCHITECTURE SUPPORT A VMM? 17

A. INSTRUCTIONS THAT REFERENCE OR CHANGE SENSITIVE
REGISTERS (RULE 3B) 19

1. SGDT, SIDT, and SLDT Instructions 19
2. SMSW Instruction 20
3. PUSHF and POPF Instructions '. 21

B. INSTRUCTIONS THAT REFERENCE THE PROTECTION SYSTEM
(RULE3C) 23

1. LAR, LSL, VERR, and VERW Instuctions 23
2. POP Instructions 23
3. PUSH Instructions 24
4. CALL, JMP, INT n, and RET Instructions 24
5. STR Instruction 26

C. CONCLUSION 27

vn

IV. VMWARE 29

A. OVERVIEW OF VMWARE 29
1. VMware claims , 30
2. Virtual Platform Architecture 32
3. Isolation 34
4. Performance 35

B. VMWARE AS A "VIRTUAL VMM" 35
1. Hardware.. 35
2. Software 37

V. CAN AN INTEL "VMM" BE SECURE? 39

A. ARE SECURE VMMS POSSIBLE?. : 39

B. INTEL ARCHITECTURE SECURITY 44
1. Hardware Rings 46
2. Operating System Design Issues 46

C. TYPES OF INTEL VIRTUALIZATION 48
1. Pure Emulation 48
2. OS/API Emulation 49
3. Virtualization 49

D. ADDITIONAL INTEL VIRTUALIATION INSIGHTS 53
1. Virtual CPU's 54
2. Virtual Physical Memory 54
3. Virtual I/O Devices 54
4. Virtual Network Interface 55

E. PROBLEMS WITH CURRENT VMMS AND MANDATORY POLICY
ENFORCEMENT 55

1. Resource Sharing •. 56
2. Networking and File Sharing 56
3. Virtual Disks 56
4. Program Utilities 57
5. Host Operating System 58
6. Serial and Printer Ports 58

F. A BETTER APPROACH FOR USING AN INTEL VMM TO SEPARATE
MANDATORY SECURITY LEVELS 59

Vlll

VI. CONCLUSIONS 63

A. FUTURE WORK 64

APPENDIX A. INTEL PENTIUM III ARCHITECTURE REVIEW 65

A. ARCHITECTURE 65

B. MEMORY MODELS 65

C. EXECUTION ENVIRONMENT 67

D. EFLAGS REGISTER 69

E. PROTECTION MECHANISM 69

F. INTERRUPTS AND EXCEPTIONS 72

G. INPUT/OUTPUT 73

H. ADDITIONAL SYSTEM REGISTERS 74

I. TASK MANAGEMENT 74

J. PROCESSOR MANAGEMENT AND INITIALIZATION 79

K. GATES 80

L. MEMORY MANAGEMENT 81

APPENDIX B. INTEL INSTRUCTIONS 83

LIST OF REFERENCES 91

BIBLIOGRAPHY 95

INITIAL DISTRIBUTION LIST 97

IX

X

LIST OF FIGURES

Figure 1. Hardware and Software Execution of Various Types of Machines 10
Figure 2. A Hypothetical Type I VMM Supporting Popular PC Operating Systems 11
Figure 3. A Hypothetical Type II VMM Supporting Popular PC Operating Systems 12
Figure 4. VMware Virtual Platform From Ref. [7] 29
Figure 5. VMware Virtual Platform Dual Mode Personality From Ref. [7] 33
Figure 6. VMware Virtual Platform Architecture 36
Figure 7. VMware Screen Shot Using Linux Host OS From Ref. [7] 36
Figure 8. VMware Screen Shot Using Windows NT Host OS From Ref. [7] 36
Figure 9. Pentium Pro Processor Microarchitecture From Ref. [26] 66
Figure 10. Three Memory Management Models From Ref. [26] 67
Figure 11. The EFLAGS Register From Ref. [26] 70
Figure 12. Control Registers From Ref. [27] 75
Figure 13. System Registers and Data Structures From Ref. [27] 78
Figure 14. Segmentation and Paging From Ref. [27] '. 82

XI

Xll

LIST OF TABLES

Table 1. Important CRO Machine Status Word Bits 20
Table 2. Important EFLAGS Register Bits 22
Table 3. Layers In The VAX Security Kernel Design 45
Table 4. Intel Program Resources 68
Table 5. Privilege Checking Rules for Call Gates After Ref. [26] 71

xiu

XIV

I. INTRODUCTION

A. BACKGROUND

Technological developments in the early 1970's brought about large multi-access,

multi-programming, multi-processing computer systems. Multi-access allowed many

users to access the same computer simultaneously. Multi-programming allowed multiple

programs to be loaded into a computer's memory simultaneously. A scheduler in the

system time-multiplexes the processor among the processes that are executing the

programs. Finally, multi-processing allowed one computer to use many processors

simultaneously.

The characteristics listed above brought about a new age in computing. Most

computer users no longer had to be in the computing facility to use the computer.

However, this was not true for system programmers. System programmers require direct

access to the resources of the computer system, which can not be provided through the

computer's operating system. Therefore, not only did system programmers have to be in

the computing facility to work, they had to make the system inaccessible to other users in

order to do their work. To overcome this difficulty, virtual machine monitors were

invented. A virtual machine monitor provides all computer system users the appearance

of having direct access to the resources of a "bare" computer.

A virtual machine monitor (VMM) is software for a computer system that creates

efficient, isolated programming environments that are "duplicates" of the real machine

environment. These "duplicates" are referred to as virtual machines. Goldberg defines a

virtual machine (VM) as: "a hardware-software duplicate of a real existing computer

system in which a statistically dominant subset of the virtual processor's instructions

execute on the host processor in native mode" [Ref. 1]. A VMM mediates between the

virtual machine(s) and the real resources of the computer system. CP-67 is an example of

one of the earliest virtual machine monitors.

In the past, some virtual machine monitors have been used to separate mandatory

security classes. Examples of such usage can be seen in SDC's KVM-370 and the DEC

VAX SVS. If a secure VMM could be built for the Intel Pentium1 architecture, it would

be very attractive because a single machine could be used to implement multi-level

security and also run commercial-off-the-shelf operating systems and applications. The

focus of this research is to determine whether a VMM written for the Intel Pentium

architecture can provide this type of security and convenience.

B. GOALS OF THE THESIS

The first goal of this thesis is to determine whether any type of virtual machine

monitor can be built on the Intel Pentium architecture. Types of virtual machine monitors

include Type I, Type II, and Hybrid (all of which are described later in this thesis). If a

VMM can be constructed for the Intel Pentium architecture, I will determine whether the

VMM can be secure.

C. VIRTUAL MACHINE MONITORS

1. Benefits of Virtual Machine Monitors
Virtual machine monitors have many benefits. First, virtual machine monitors

normally allow a system manager to configure the environment in which a virtual

machine will run. Therefore, virtual machines can have configurations different from

those of the real machine. This means that even though a real machine might have 32MB

of memory, a virtual machine may be set to have 8 MB of memory. This situation would

allow a developer to test the performance of his application on a machine with only 8 MB

of memory without having to construct a real machine with only 8 MB of memory.

Second, virtual machines allow many different operating systems to be run

Throughout this paper, the term "Intel Pentium architecture" will refer to the architecture of the following

processors which are all trademarks of the Intel Corporation: Intel Pentium, Intel Pentium Pro, Intel Pentium with

MMX Technology, Intel Pentium II, and Intel Pentium EL

concurrently on the same computer. Users can run any operating system and applications

they choose as long as they are designed to run on the real processor architecture. This

benefit makes application development for different operating systems much easier.

Since several different operating systems can run on the same computer, a developer can

test his application on many operating systems using the same computer.

Third, virtual machines allow users to run untrusted applications in an isolated

environment. For example, a program that is downloaded from the Internet could be

tested in a virtual machine. If the program contained a virus, the virus would be isolated

to that virtual machine. This protects the rest of the machine's applications and data.

Fourth, virtual machines can be used to upgrade operating system software to a

different version without losing the ability to run the older "legacy" operating system and

its applications. The legacy operating system and its applications can run in a virtual

machine exactly as they did previously on the real machine, while the new version of the

operating system runs in a separate virtual machine.

Finally, virtual machine monitors can be used to construct system software for

scalable computers that have anywhere from 10 to 100 processors. These systems are

being used more and more in the marketplace. However, the system software for these

scalable machines has not reached the functionality and reliability that is expected in

modern operating systems. Operating system developers must be blamed for this

problem. They must make many modifications to an operating system to support scalable

machines.

Virtual machine monitors are a solution to this problem. Using a VMM, an

additional software layer can be inserted between the hardware and multiple operating

systems. This layer would allow multiple copies of an operating system to run on the

same scalable computer. The VMM also allows these operating systems to share

resources with each other. This solution has most of the features of an operating system

that was custom-built for a scalable machine. However, the development costs and

complexity of the virtual machine monitor are significantly lower than for a custom

solution. A prototype of this solution, called Disco, was developed at Stanford University

on the Stanford FLASH shared-memory multi-processor [Ref. 2]. Disco uses many

different commercial operating systems to provide high-performance system software.

The professors at Stanford who worked on the Disco prototype later formed VMware,

Inc. Their product, called VMware2, is a VMM for the Intel Pentium architecture and is

discussed in a portion of this thesis.

2. Characteristics and Layers of a VMM
A VMM has three characteristics [Ref. 3]. First, a VMM provides an

environment that is almost identical to the original machine. This means that any

program that runs in a VM should run the same as if it had been run on the original

machine. The exceptions to this rule are differences in system resource availability,

timing dependencies, and attached I/O devices. If resource availability is different, such

as reduced physical memory, the program will obviously not perform as well because the

program will need to page or swap. Timing dependencies may lose their validity because

a VMM may intervene and execute a different set of instructions when certain

instructions are executed by a VM. These substitute instructions may take longer than

expected to execute. Therefore, any assumptions about how long instructions will take to

execute may be incorrect. Finally, if the VM is not configured to have a peripheral

device that is attached to the real machine, such as a network card, it will not be able to

access the peripheral device even though it is attached to the real machine.

The second characteristic of a VMM is that it must be in control of real system

resources. This means that no program running under a VMM can access any resource

that is not explicitly allocated to it by the VMM. It also means that it is possible for the

VMM to regain control of resources that it already allocated.

Third, a VMM must be efficient. This means that a large percentage of the virtual

processor's instructions must be executed by the machine's real processor, without VMM

intervention. Instructions which can not be executed directly by the real processor are

interpreted by the VMM.

VMware and VMware's patent-pending Virtual Platform are trademarks of VMware, Inc.

Some virtual machines exhibit the recursion property. This means that it is

possible to run a VMM inside of a VM, producing a new level of virtual machines. The

real machine is normally called Level 0. A VMM running on Level 0 is said to be Level

1, etc.

3. Logical VMM Modules
A VMM normally has three generic types of modules: dispatcher, allocator, and

interpreter. A jump to the dispatcher is placed in every location to which the machine

traps. The dispatcher then decides which of its modules to call when the machine traps.

The second type of module is the allocator. If a VM tries to execute a privileged

instruction that would change the resources of the VM's environment, the VM will trap to

the VMM dispatcher. The dispatcher will handle the trap by invoking the allocator that

performs the requested resource allocation according to VMM policy. There is only one

allocator module in a VMM. However, the allocator is a large portion of the virtual

machine monitor. It decides which system resources to provide to each VM, ensuring

that two different VM's do not get the same resource. The final module type is an

interpreter. Each privileged instruction will have an interpreter module that is called by

the dispatcher to simulate the effect of the instruction that caused the trap.

D. THESIS ORGANIZATION

The rest of this thesis is organized as follows: Chapter II contains a discussion of

the three different types of VMMs and their hardware requirements. Chapter III is an

analysis of the Intel architecture to determine if it can meet any of the VMM hardware

requirements described in Chapter II. Chapter IV is a case study of a commercial product

called VMware and how it relates to Intel Pentium virtualization. Chapter V determines

whether or not a VMM designed for the Intel Pentium architecture can be secure. Finally,

Chapter VI is a conclusion of this work and also addresses possible future research.

This thesis has two appendices. Appendix A contains a brief summary of the Intel

architecture and is recommended to readers who are not familiar with the Intel Pentium

architecture. Appendix B is a table of the results obtained from the analysis in Chapter

III. It is a list of all documented Intel Pentium instructions and whether or not they are

virtualizable.

II. TYPES OF VIRTUAL MACHINE MONITORS

This chapter discusses each type of VMM including the Type I VMM, Type II

VMM, and Hybrid VMM. It will also cover the architectural features that each type of

VMM requires in order to be implemented.

An operating system consists of instructions to be executed on a hardware

processor. When an operating system is virtualized, some portion, ranging from none to

all, of the instructions may be executed by underlying software. The amount of software

and hardware execution of processor instructions determines if one has a complete

software interpreter machine (CSIM), hybrid VM (HVM), VMM, or a real machine.

Each of these different types of machines provides a normal machine environment,

meaning that processor instructions can be executed in them. Thus, a VMM can host an

operating system. However, they differ in the way that the machine environment actually

executes the processor instructions. A real machine uses only direct execution, meaning

that the processor executes every instruction. A CSIM uses only software interpretation,

meaning that a software program emulates every processor instruction. Goldberg says

that a VMM requires that a "statistically dominant subset" of the virtual processor's

instructions be executed on the real processor [Ref. 1]. Although he does not give a

specific percentage, it is easy to see that performance will be better if more instructions

are executed directly by the processor. For example, when executed directly, the LGDT x

instruction loads x into the global descriptor table register of the processor. However,

when emulated by software, the instruction would first trap to a VMM. The VMM would

then execute a MOV y, x instruction to store the value x in a special memory location y

designated by the VMM. The special memory location, y, is necessary because the

processor's global descriptor table register (GDTR) must hold the location of the global

descriptor table of the VMM or host OS. A VMM can not allow a virtual machine to

overwrite the real GDTR register. Finally, the VMM would have to return to the virtual

machine to allow it to continue executing. VMMs primarily use direct execution, with

occasional traps to software. As a result, the performance of VMMs is better than CSIMs

and HVMs. An HVM is a VMM that uses software interpretation on all privileged

instructions. HVMs are possible on a larger class of systems than VMMs.

The definition of a VMM does not specify how the VMM gains control of the

machine to interpret instructions that cannot be directly executed on the processor. As a

result, there are two different types of VMMs that can create a virtual machine

environment. These types are referred as Type I and Type II in Goldberg's thesis. A

Type I VMM runs on a bare machine, meaning that it is an operating system with

virtualization mechanisms. It performs the scheduling and allocation of the system's

resources. A Type II VMM runs as an application under an operating system. The

operating system that controls the real hardware of the machine is called the "host OS."

The host OS does not need or use any part of the virtualization environment. Every OS

that is run in the virtual environment under the host OS is called a "guest OS." In a Type

II VMM, the host operating system provides resource allocation and a standard execution

environment to each guest OS.

When executing in a virtual machine, some processor instructions can not be

executed directly on the processor. These instructions would interfere with the state of

the underlying VMM or host OS and are called sensitive instructions. The key to

implementing a VMM is to prevent the direct execution of sensitive instructions. Some

sensitive instructions in the Intel Pentium architecture are privileged, meaning that if they

are not executed at CPL 0, they will cause a general protection exception. Normally, a

VMM is executed in privileged mode and a VM is run in user mode. When sensitive

instructions that are privileged are executed in a VM, they cause a trap to the VMM. If

all sensitive instructions of a processor are privileged, the processor is considered to be

"virtualizable." This is because all sensitive, privileged instructions will trap to the

VMM because they are executing in user mode. After trapping, the VMM will execute

code that will emulate the proper behavior of the privileged instruction for the virtual

machine. However, if sensitive, non-privileged instructions exist, they may interfere

with the proper operation of the VM. This means that it may be necessary for the VMM

to examine each instruction before execution to ensure that it is not a sensitive, non-

privileged instruction. When a sensitive instruction is encountered, the virtual machine

must be forced to trap to the VMM so that it can be handled properly. Examining every

instruction before it is executed will cause considerable overhead.

The most severe performance penalty comes when running a complete software

interpreter machine (CSIM). A CSIM emulates every instruction of the real processor. It

is not a virtual machine because it does not execute any of the instructions directly on the

real processor. Figure 1 below illustrates the various types of machines based on the

amount of hardware and software execution.

In his thesis, Goldberg explores third generation hardware to determine which

processors, if any, can run virtual machine monitors. Some of the key architectural

features of third generation hardware are: two processor modes of operation, a method for

non-privileged programs to call privileged system routines, a memory relocation or

protection mechanism such as segmentation or paging, and asynchronous interrupts to

allow the I/O system to communicate with CPU. Even though Goldberg's thesis was

written over twenty-five years ago, all of these characteristics still apply to the Intel

Pentium architecture. The Intel Pentium processor has four modes of operation, known

as rings, or current privilege level (CPL), 0 through 3. Ring 0 is the most privileged level

of operation. Operating systems operate in this ring. Ring 3 is the least privileged ring,

where applications programs execute. The Intel architecture also has a method for non-

privileged tasks to call privileged system routines—the call gate. Call gates allow

transfer .of program control between privilege levels. The Intel architecture also uses both

paging and segmentation to implement its protection mechanism. Finally, the Intel

architecture uses both interrupts and exceptions to allow the I/O system to communicate

with the CPU. The architecture has 16 predefined interrupts and exceptions and 224

user-defined, or maskable, interrupts.

After examining third generation hardware, Goldberg developed a list of

requirements that a processor must meet in order to be virtualizable. He analyzed twelve

different third generation processors and found that only five were virtualizable.

I

N

S

T

R

U

C

T

I

O

N

S

All

Most

-Half

Some

None

m Direct H/W execution

r-r-] Software Interpretation

Real Machine Type II VMM
Type I VMM Hybrid VM

TYPE OF MACHINE

CSIM

Figure 1. Hardware and Software Execution of Various Types of Machines.

He concluded that most of the seven remaining processors were not virtualizable because

they were not designed to be. The following sections will analyze each type of VMM

and the requirements that a processor must meet in order to support it.

10

A. TYPE I VMM

A Type I VMM runs directly on the machine hardware. In other words, it is an

operating system or kernel that has mechanisms to support virtual machines. A Type I

VMM is illustrated in Figure 2.

A Type I VMM must perform scheduling and resource allocation for all virtual

machines in the system. This means that a Type I VMM may be much larger than Type

II VMM because of the extra code needed to implement these features. Furthermore, a

Type I VMM requires drivers for hardware peripherals.

Goldberg develops a set of rules to determine if processor hardware is capable of

supporting virtual machines and thus could be a host for a Type I VMM. His three

requirements for virtualization are:

1) The method of executing non-privileged instructions must be roughly

equivalent in both privileged and user mode. For example, a processor can not use an

additional bit in an instruction word or in the address portion of an instruction when in

privileged mode.

2) There must be a method such as a protection system or an address translation

system to protect the real system and any other VMs from the active VM.

VM1 VM2; VM3 . , -VM4..V - -

Apps Apps Apps: : >>(Apps

Windows 98 Windows NT Other Intel OS Linux

Type I VMM

Hardware

Figure 2. A Hypothetical Type I VMM Supporting Popular PC Operating Systems.

11

3) There must be a way to automatically signal the VMM when a VM attempts to

execute a sensitive instruction. It must also be possible for the VMM to simulate the

effect of the instruction. Sensitive instructions include:

A) Instructions that attempt to change or reference the mode of the VM or the

state of the machine.

B) Instructions that read or change sensitive registers and/or memory locations

such as a clock register and interrupt registers.

C) Instructions that reference the storage protection system, memory system, or

address relocation system. This class includes instructions that would allow

the VM to access any location that is not in its virtual memory.

D) All I/O instructions.

B. TYPE II VMM

A Type II VMM runs as an application under a host operating system. A type II

VMM is illustrated in Figure 3.

VM1 VM2 VM3

Host OS Apps

Apps Apps Apps

Windows 98 Windows NT Other Intel OS

Type II VMM

Host Operating System

Hardware

Figure 3. A Hypothetical Type II VMM Supporting Popular PC Operating Systems.

12

A Type II VMM should be simpler than a Type I VMM because the memory

management, processor scheduling, resource allocation, and hardware drivers of the host

operating system are used in its implementation. A Type II VMM provides only

virtualization support services. The Type II VMM virtualizes the real machine even

though the VMM is running as an application in the host OS.

To support a Type II virtual machine a processor must meet all of the hardware

requirements for the Type I VMM listed above. However, in addition to these

requirements, there are software requirements for the host operating system that a Type II

VMM runs on. The host OS requirements are:

1) The host OS can not do anything to invalidate the requirement that the method

of executing non-privileged instructions must be roughly equivalent in both privileged

and user mode.

2) There must be primitives available in the. host OS to protect the VMM and

other VMs from the active virtual machine. Examples of this primitive include a

protection primitive, address translation primitive, or a sub-process primitive.

When the virtual machine traps because it attempted to execute a sensitive

instruction, the host OS must direct the signal to the VMM. Therefore, the host OS needs

a primitive to perform this action. The host OS also needs a mechanism to allow a VMM

to run the virtual machine as a sub-process. The VMM must still be able to simulate

sensitive instructions.

This thesis will not analyze software requirements for a host OS because we are

interested in analyzing the Intel processor's capability to run a secure VMM. A VMM

that runs under an existing commercial-off-the-shelf OS that was designed for the Intel

Pentium architecture such as Windows, Linux, and FreeBSD will in all likelihood not

have a high level of security (it should be noted, however, that high assurance operating

systems have been developed for the Intel architecture such as the WANG XTS 300

STOP [Ref. 4] and the Gemini GTNP GEMSOS [Ref. 5]). Therefore, a secure

implementation of a VMM will almost certainly have to be a Type I VMM.

13

As with third generation processors, Goldberg found that most host operating

systems (4 out of the 5 that were examined) could not support virtual machines. Again,

this is because the operating systems were not designed with virtualization in mind.

C. HYBRID VMM

Often, if a processor does not meet the Type I or Type II VMM requirements, it

can still implement a hybrid virtual machine monitor. A hybrid VMM has all of the

advantages of normal VMMs and avoids the performance penalties of a CSIM. A hybrid

virtual machine is functionally equivalent to the real machine. The major difference

between an HVM and a VMM is that an HVM interprets every privileged instruction in

software, whereas a VMM may directly execute some privileged instructions. Therefore,

it treats the privileged mode of hardware as a pure software construct. In both a VMM

and an HVM, all non-privileged instructions execute directly on the processor.

An HVM has less strict hardware requirements than a VMM for two reasons.

First, the HVM does not have to directly execute non-sensitive privileged instructions

because they are all emulated in software. Second, because of the emulation, the HVM

does not have to map the most privileged processor mode into another privilege level of

the processor. Performance of an HVM is usually lower than that of a VMM as a result of

a higher number of privileged instructions being interpreted instead of being executed

directly on the hardware.

The hardware requirements for an HVM to be virtualizable are changed in the

following ways. First, requirement 1, which states that the method of executing non-

privileged instructions must be roughly equivalent in both privileged and user mode, is

eliminated. Second, requirement 3A, which states that if an instruction attempts to

change or reference the mode of the VM or the state of the machine, there must be a way

to automatically signal the VMM and a way to simulate the instruction, is weakened. Of

the seven third generation processors that failed Goldberg's analysis for VMM, four of

them were candidates for an HVM because of the less strict requirements.

14

Now that each type of VMM and its hardware requirements have been defined, it

is necessary to examine the Intel Pentium architecture to see if it can support any of these

VMMs.

15

THIS PAGE INTENTIONALLY LEFT BLANK

16

III. CAN THE INTEL ARCHITECTURE SUPPORT A VIRTUAL

MACHINE MONITOR?

This chapter will analyze whether or not the Intel Pentium architecture is

virtualizable by using the hardware requirements that were described in the previous

chapter. A major result of this analysis is Appendix B, which contains every documented

instruction for the Intel Pentium architecture and whether or not it supports virtualization.

Whether or not the Intel architecture is virtualizable is "a hit-or-miss proposition"

because it was not designed to support virtual machines. After examining the processor

requirements for virtualization, it can be seen that any instruction in the processor's

instruction set that violates rule 1, 2, 3A, 3B, 3C, or 3D prevents the processor from

running a Type I or Type II VMM. Additionally, any instruction that violates rule 2, 3A

in its weaker form, 3B, 3C, or 3D prevents the processor from running an HVM. By

combining these two statements, one can see that any instruction that violates rule 2, 3A

in its weaker form, 3B, 3C, or 3D makes the processor non-virtualizable.

With respect to the VMM hardware requirements listed above, Intel meets all

three of the main requirements for virtualization.

Requirement 1: The method of executing non-privileged instructions must be

roughly equivalent in both privileged and user mode. Intel meets this requirement

because the method for executing privileged and non-privileged instructions is the same.

The only difference between the two types of instructions in the Intel architecture is that

privileged instructions cause a general protection exception if the CPL is not equal to 0.

Requirement 2: There must be a method such as a protection system or an address

translation system to protect the real system and any other VMs from the active VM.

Intel uses both segmentation and paging to implement its protection mechanism. Paging

is a mechanism where sections of a program's execution environment are mapped into

physical memory as they are needed. Segmentation provides a mechanism to divide the

linear address space into individually protected address spaces (segments). Segments are

17

used to hold the code, data, and stack for programs and to hold system data structures

such as task state segment and a local descriptor table. Segments have a descriptor

privilege level (DPL) ranging from zero to three that specifies the privilege level of the

segment. The DPL is used to control access to the segment. Using DPLs, the processor

enforces the boundaries between segments and does not allow one program to write into

another program's segments.

Requirement 3: There must be a way to automatically signal the VMM when a

VM attempts to execute a sensitive instruction. It must also be possible for the VMM to

simulate the effect of the instruction. The Intel architecture uses interrupts and

exceptions to redirect program execution and allow interrupt and exception handlers to

execute when a privileged instruction is executed by an unprivileged task. However, the

Intel instruction set contains instructions that are sensitive and unprivileged. The

processor will execute unprivileged, sensitive instructions without generating an interrupt

or exception. Therefore, a VMM will never have the opportunity to simulate the effect of

the instruction.

After examining each member of the Intel instruction set (as of 20 June 99), it

was found that seventeen instructions violate requirement 3. All seventeen instructions

violate either part B or part C of requirement 3. An analysis of every Intel instruction can

be found in Appendix C. The list in Appendix C contains the instruction name, its class,

whether it is sensitive, whether it is privileged, whether it prevents virtualization, and the

reason (if any) why it prevents virtualization. Each of the instructions that make the Intel

processor non-virtualizable will be discussed in more detail below. Any manufacturer

who wishes to make a version of the Intel Pentium chip that is truly virtualizable would

need to focus on these instructions. Since all seventeen of the instructions to be discussed

violate one of two requirements, there is a considerable amount of overlap in the

discussion of each of instructions.

18

A. INSTRUCTIONS THAT REFERENCE OR CHANGE SENSITIVE
REGISTERS (RULE 3B)

Several Intel instructions break hardware virtualization rule 3B. The rale states

that instructions are sensitive if they read or change sensitive registers and/or memory

locations such as a clock register and interrupt registers.

1. SGDT, SIDT, and SLDT Instructions
The SGDT, SIDT, and SLDT instructions are similar in the way that they violate

this rule. In protected mode, all memory accesses pass through either the GDT or LDT.

The GDT and LDT contain segment descriptors that provide the base address, access

rights, type, length, and usage information for each segment. The interrupt descriptor

table (IDT) is similar to the GDT and LDT, but it holds gate descriptors that provide

access to interrupt and exception handlers. The GDTR, LDTR, and IDTR all contain the

linear addresses and sizes of their respective tables.

All three of these instructions (SGDT, SIDT, SLDT) store a special register value

into some location. The SGDT instruction stores the contents of the GDTR in a 6-byte

memory location. The SLDT instruction stores the segment selector from the LDTR in a

16 or 32-bit general-purpose register or memory location. The SIDT instruction stores the

contents of the IDTR in a 6-byte memory location. These instructions are normally only

used by operating systems but are not privileged in the Intel architecture. Since the Intel

processor only has one LDTR, IDTR, and GDTR, a problem arises when multiple

operating systems try to use the same registers. Even though these instructions do not

protect the sensitive registers from reading by unprivileged software, the Intel processor

allows partial protection for these registers by only allowing tasks at CPL 0 to load the

registers. This means that if a VM tries to write to one of these registers, a trap will be

generated. The trap allows a VMM to produce the expected result for the VM. However,

if an OS in a VM uses SGDT, SLDT, or SIDT to reference the contents of the IDTR,

LDTR, or GDTR, the register contents that are applicable to the host OS or Type I VMM

will be given. This could cause a problem if an operating system of a virtual machine

(VMOS) tries to use these values for its own operations since they are what the VMOS

19

expects. Therefore, a Type I VMM or Type II VMM must provide each VM with its own

virtual set of IDTR, LDTR, and GDTR registers.

2. SMSW Instruction
The SMSW instruction stores the machine status word (bits 0 through 15. of

control register 0) into a general-purpose register or memory location. Bits 6 through 15

of CRO are reserved bits that are not supposed to be modified. Bits 0 through 5, however,

contain system flags that control the operating mode and state of the processor. These six

bits are described in Table 1:

Bit
Number

Flag Name Description

0 PE - Protection Enable Enable protected mode when set and real-mode
when clear.

1 MP - Monitor Coprocessor Controls the interaction of the WAIT or FWAIT
instruction with the TS flag.

2 EM - Emulation Indicates that the processor has an internal or
external floating point unit when clear.

3 TS-Task Switched Allows delayed saving of the floating point unit
context on a task switch until the unit is accessed
by the new task.

4 ET - Extension Type For 386 and 468 processors, indicates whether an
Intel 387 DX math coprocessor is present
(hardcoded to 1 on >Pentium processors).

5 NE - Numeric Error Enables the internal mechanism or PC-style
mechanism for FPU error reporting.

Table 1. Important CRO Machine Status Word Bits.

Even though this instruction only stores the machine status word, it is still

sensitive and unprivileged. Consider the following scenario: A VMOS is running in real

mode under the virtual environment of a VMM running in protected mode on the

processor. If the VMOS checked the MSW to see if it was in real mode, it would

incorrectly see that the PE bit is set. This means that the machine is in protected mode.

If the VMOS halts or shuts down if in protected mode, the VMOS will not be able to run

successfully.

20

According to the Intel instruction set reference [Ref. 6], this instruction is only in

the architecture to be backward compatible with the Intel 286 processor. Programs

written for the Intel 386 processor and later are supposed to use the MOV instruction to

load and store control registers. Furthermore, the MOV to and from control register

instructions are privileged instructions. Therefore, the SMSW could be removed from the

Intel architecture completely and would only affect systems that needed to be backward

compatible with the Intel 286 processor. Application software written for the Intel 286

and 8086 processors should be unaffected because the SMSW instruction is a system

instruction that should not be used by application software.

3. PUSHF and POPF Instructions
The PUSHF and POPF instructions each reverse the operation of the other. The

PUSHF instruction pushes the lower 16 bits of the EFLAGS register onto the stack and

decrements the stack pointer by 2. The POPF instruction pops a word from the top of the

stack, increments the stack pointer by 2, and stores the value in the lower 16 bits of the

EFLAGS register. The PUSHFD and POPFD instructions are the 32-bit counter-parts of

the POPF and PUSHF instructions. Pushing the EFLAGS register onto the stack allows

the contents of the EFLAGS register to be examined. Much like the lower 16 bits of the

CRO register mentioned above, the EFLAGS register contains flags that control the

operating mode and state of the processor. Therefore, the PUSHF/PUSHFD instructions

prevent the Intel processor from being virtualizable in the same way that the SMSW

instruction prevents virtualization. In virtual-8086 mode, the IOPL must equal 3 to use

the PUSHF instructions. Of the 32 flags in the EFLAGS register, fourteen are reserved

and six are arithmetic flags. The bits of concern are described in Table 2 below.

In contrast to the PUSHF instruction, the POPF instruction allows values in the

EFLAGS register to be changed. The effect of the POPF instruction varies based on what

mode the processor is operating in. In real-mode, or when operating at CPL 0, all non-

reserved flags in the EFLAGS register can be modified except the VM, VIP, and VIF

flags. In virtual-8086 mode, the IOPL must equal 3 to use the POPF instructions. The

IOPL allows an OS to set the privilege level needed to perform I/O. In virtual-8086

21

mode, the VM, RF, IOPL, VIP, and VIF flags are unaffected by the POPF instruction. In

protected mode, there are several conditions based on privilege levels. First, if the CPL is

greater than 0 and less than or equal to the IOPL, all flags can be modified except IOPL,

VIP, VIF, and VM. The interrupt flag is altered when the CPL is at least as privileged as

the IOPL. Finally, if a POPF/POPFD instruction is executed without enough privilege,

an exception is not generated. However, the bits of the EFLAGS register are not

changed.

Bit
Number

Flag Name Description

8 TF - Trap Set to enable single-step mode for debugging.
9 IF - Interrupt Enable Controls the response of the processor to maskable

interrupt requests.
10 DF - Direction Setting causes string instructions to process

addresses from high to low.
12-13 IOPL - I/O Privilege Level Indicates the I/O privilege level of the currently

running task.
14 NT - Nested Task Set when the current task is linked to the previous

task.
16 RF - Resume Controls the processor's response to debug

exceptions.
17 VM - Virtual-8086 Mode Enables Virtual-8086 mode when set.
18 AC - Alignment Check Enables alignment checking of memory references.
19 VIF - Virtual Interrupt Virtual image of the IF flag.
20 VIP - Virtual Interrupt

Pending
Indicates whether or not an interrupt is pending.

21 ID - Identification If a program can set or clear this instruction, the
CPUID instruction is supported.

Table 2. Important EFLAGS Register Bits.

The POPF/POPFD instructions also prevent virtualization of the

processor. This is because they allow modification of some of the bits in the EFLAGS

register that control the operating mode and state of the processor.

22

B. INSTRUCTIONS THAT REFERENCE THE PROTECTION SYSTEM
(RULE3C)

Many Intel instructions violate rule 3C.

1. LAR, LSL, VERR, VERW Instructions
Four instructions violate the rule in a similar manner: LAR, LSL, VERR, and

VERW. The LAR instruction loads access rights from a segment descriptor into a

general purpose register. The LSL instruction loads the unscrambled segment limit from

the segment descriptor into a general-purpose register. The VERR and VERW

instructions verify whether a code or data segment is readable or writable from the

current privilege level. The problem with all four of these instructions is that they all

perform the following check during their execution: (CPL > DPL) OR (RPL > DPL).

This conditional checks to ensure that the current privilege level (located in bits 0 and 1

of the CS register and the SS register) and the requested privilege level (bits 0 and 1 of

any segment selector) are both greater than the descriptor privilege level (the privilege

level of a segment). This is a problem because a VM normally does not execute at the

highest CPL (CPL = 0). It is normally executed at the user or application level (CPL = 3)

so that all privileged instructions will cause traps that can be handled by the VMM.

However, most operating systems assume that they are operating at the highest privilege

level and that they can access any segment descriptor. Therefore, if a VMOS running at

CPL = 3 uses any of the four instructions listed above to examine a segment descriptor

with a DPL < 3, it is likely that the instruction will not execute properly.

2. POP Instruction
The reason that the POP instruction prevents virtualization is very similar to that

mentioned in the previous paragraph. The POP instruction loads a value from the top of

the stack to a general-purpose register, memory location, or segment register. However,

the POP instruction can not be used to load the CS register since it contains the CPL. A

value that is loaded into a segment register must be a valid segment selector. The reason

that POP prevents virtualization is because it depends on the value of the CPL. If the SS

register is being loaded and the segment selector's RPL and the segment descriptor's

23

DPL are not equal to the CPL, a general protection exception is raised. Additionally, if

the DS, ES, FS, or GS register is being loaded, the segment being pointed to is a

nonconforming code segment or data, and the RPL and CPL are greater than the DPL, a

general protection exception is raised. As in the previous case, if a VM's CPL is 3

because it is running as a user application in a VMM, these privilege level checks could

cause unexpected results if a VMOS assumes that it is in CPL 0.

3. PUSH Instruction
The PUSH instruction also prevents virtualization because it references the

protection system. The PUSH instruction allows a general-purpose register, memory

location, an immediate value, or a segment register to be pushed onto the stack. This can

not be allowed because bits 0 and 1 of the CS and SS register contain the CPL of the

current executing task. The following scenario demonstrates why these instructions could

cause problems for virtualization. A process that thinks it is running in CPL 0 pushes the

CS register to the stack. It then examines the contents of the CS register on the stack to

check its CPL. Upon finding that its CPL is not 0, the process may halt.

4. CALL, JMP, INT n, and RET Instructions
The CALL instruction saves procedure linking information to the stack and

branches to the procedure given in its destination operand. There are four types of

procedure calls: near calls, far calls to the same privilege level, far calls to a different

privilege level, and task switches. Near calls and far calls to the same privilege level are

not a problem for virtualization. Task switches and far calls to different privilege levels

are problems because they involve the CPL, DPL, and RPL of the Intel protection system.

If a far call is executed to a different privilege level, the code segment for the procedure

being accessed has to be accessed through a call gate. A task uses a different stack for

every privilege level. Therefore, when a far call is made to another privilege level, the

processor switches to a stack corresponding to the new privilege level of the called

procedure. A task switch operates in a manner similar to a call gate. The main difference

is that the target operand of the call instruction specifies the segment selector of a task

gate instead of a call gate. Both call gates and task gates have many privilege level

24

checks in their execution that compare the CPL and RPL to DPLs. Since the VM

normally operates at user level (CPL 3), these checks will not work correctly when a

VMOS tries to access call gates or task gates at CPL 0.

The discussion above on LAR, LSL, VERR, and VERW provides a specific

example of how running a CPL 0 operating system as a CPL 3 task could cause a

problem. The JMP instruction is similar to the CALL instruction in both the way that it

executes and the reasons it prevents virtualization. The main difference between the

CALL and the JMP instruction is that the JMP instruction transfers program control to

another location in the instruction stream and does not record return information. The

INT instruction is also similar to the CALL instruction. The INT n instruction performs a

call to the interrupt or exception handler specified by n. INT n does the same thing as a

far call made using the CALL instruction except that it pushes the EFLAGS register onto

the stack before pushing the return address. The INT instruction references the protection

system many times during its execution.

The RET instruction has the opposite effect of the CALL instruction. It transfers

program control to a return address that is placed on the stack (normally by a CALL

instruction). The RET instruction can be used for three different types of returns: near,

far, and inter-privilege-level returns. Much like the CALL instruction, the inter-privilege-

level far return examines the privilege levels and access rights of the code and stack

segments that are being returned to determine if the operation should be allowed. The

DS, ES, FS, and GS segment registers are cleared by the RET instruction if they refer to

segments that can not be accessed by the new privilege level. Therefore, RET prevents

virtualization because having a CPL of 3 (the VM's privilege level) could cause the DS,

ES, FS, and GS registers to not be cleared when they should be. The IRET/IRETD

instruction is similar to the RET instruction. The main difference is it returns control

from an exception, interrupt handler, or nested task. It prevents virtualization in the same

way that the RET instruction does.

25

5. STR Instruction
Another instruction that references the protection system is the STR instruction.

The STR instruction stores the segment selector from the task register into a general-

purpose register or memory location. The segment selector that is stored with this

instruction points to the task state segment of the currently executing task. This

instruction prevents virtualization because it allows a task to examine its requested

privilege level (RPL). Every segment selector contains an index into the GDT or LDT, a

table indicator, and an RPL. The RPL is represented by bits 0 and 1 of the segment

selector. The RPL is an override privilege level that is checked (along with the CPL) to

determine if a task can access a segment. The RPL is used to ensure that privileged code

cannot access a segment on behalf of an application unless the application also has the

privilege to access the segment. This is a problem because a VM does not execute at the

highest CPL or RPL (RPL = 0), but at RPL = 3. However, most operating systems

assume that they are operating at the highest privilege level and that they can access any

segment descriptor. Therefore, if a VM running at a CPL and RPL of 3 uses the STR to

store the contents of the task register and then examines the information, it will find that

it is not running at the privilege level at which it expects to run.

MOV is another instruction that prevents virtualization of the Intel processor.

There are many variants of the move instruction. The only two that prevent virtualization

are the two that load and store control registers. The MOV opcode that stores segment

registers is a problem because it allows all six of the segment registers to be stored to

either a general-purpose register or to a memory location. This is a problem because the

CS and SS registers both contain the CPL in bits 0 and 1. Therefore, a task could store

the CS or SS in a general-purpose register and examine the contents of that register to

find that it is not operating at the correct privilege level. The MOV opcode that loads

segment registers does offer a small amount of protection because it does not allow the

CS register to be loaded at all. However, if the task tries to load the SS register, several

privilege checks occur that once again become a problem when the VM is not operating

at the privilege level at which a VMOS is expecting—typically 0.

26

C. CONCLUSION

The analysis above clearly shows that the Intel processor is not virtualizable

according to Goldberg's hardware rules. However, VMware provides a Type II VMM

for the Intel Pentium processor. Their product allows a user to run multiple Intel

operating systems such as Windows NT and Linux on the same computer at the same

time. After installing the VMware product, I am convinced that VMware Inc. does

provide a virtualization environment in the form of a Type II VMM. So the question

becomes: how does VMware virtualize the Intel processor even though there are

seventeen instructions that prevent it from being virtualizable? This question will be

addressed in Chapter IV.

27

THIS PAGE INTENTIONALLY LEFT BLANK

28

IV. VMWARE ANALYSIS

A. OVERVIEW OF VMWARE

Virtual machine monitors were invented in the 1970s to multiplex expensive

mainframe hardware to system programmers. In the past 30 years, hardware performance

has increased and prices have decreased, allowing most people to have a PC on their

desktops. This trend made VMMs almost non-existent. Today, however, a company

called VMware thinks there is a need for VMMs to multiplex and manage complex,

expensive software environments. As a result, VMware has created a modern version of

the 1970s virtual machine monitor, but for the PC instead of for large mainframes.

Until VMware emerged, it was not possible to run multiple operating systems on

the same Intel x86 PC at the same time. Only one operating system at a time could run

and a reboot was needed to switch between operating systems. VMware addresses this

problem by using what they call "Virtual Platform technology" (patent pending).

The Virtual Platform is a thin software layer that multiplexes the PC's hardware to

virtual machines (see Figure 4 below).

Virtual Machines

Real Machine

Virtual Machine ± Virtual Machine 2

Apps 1 Apps 2
OS 1 OS 2

x86, motherboard,
disks, display, net, ...

x86, motherboard,
disks, display, net, ...

VMware Virtual Platform ™
x86, motherboard, disks,

display, net, ...

Figure 4. VMware Virtual Platform From Ref. [7].

29

Each virtual machine can run any operating system the user chooses. VMware for

Linux currently supports the following operating systems: MS-DOS 6, Windows 3.1,

Windows 95, Windows 98, Windows NT 4.0, Windows 2000 Professional Beta, Red Hat

Linux, Caldera OpenLinux, SuSE Linux, and FreeBSD. VMware for Windows NT will

support all of the above and also Solaris 7 Intel Edition. VMware only supports these

specific operating systems; it can not run any operating system designed for the Intel

Pentium architecture. For example, OS/2 and BeOS will not run as VMOSs on VMware.

VMware supports the most common types of I/O devices, such as IDE disks, standard

floppy drives, Ethernet cards, and sound cards.3

1. VMware Claims
VMware Inc. makes many claims about what VMware can do in [Ref. 7]. These

claims and an explanation if needed are described below.

Claim: [VMware can] "Run multiple operating systems and their applications

simultaneously in separate virtual machines on a standard PC." VMware installs like a

normal application in a host OS, either Linux or Windows NT. Running the VMware

application allows you to power on a virtual machine. Since the virtual machine has an

environment that is very similar to the real machine, many Intel Pentium operating

systems and their applications can run inside the virtual machine.

Claim: [VMware can] "Run virtual machine sessions on the X-Windows desktop

or in full-screen mode; other virtual machines continue to run in the background." Since

virtual machines are really host OS applications, they sit on the host OS desktop.

However, if the user toggles the full screen mode in a virtual machine, its VMOS can use

the full screen. In full screen mode, it is impossible to tell that other VMs and the host

OS are running in the background. A hot key can also be used to switch between virtual

machines. Since each virtual machine is a process in the host OS, it is subject to the host

3 MS-DOS, Windows 3.1, Windows 95, Windows 98, Windows NT 4.0, Windows 2000 Professional Beta, and

OS/2 are all trademarks of the Microsoft Corporation. AH other trademarks including Red Hat Linux, Caldera

OpenLinux, SuSE Linux, FreeBSD, Solaris 7 Intel Edition, and BeOS are trademarks of their respective owners.

30

OS scheduling algorithm. Therefore, all virtual machines that are running will be

scheduled like normal applications.

Claim: [VMware can] "Run operating systems already installed on a multi-boot

computer without reconfiguring." When configuring VMware to run a virtual machine, a

user can specify a mount point for the disk that the VMOS is located on. This allows any

OS that is already installed on the hard disk to be used in a virtual machine.

Claim: [Users can] "Install a virtual machine without repartitioning the system's

hard drive." If a user would like to create a new virtual machine and there is not enough

space left on the hard disk to partition the drive, the user can use a virtual hard disk. If

this is done, a virtual machine encapsulates the hard drive for the VMOS and its

applications into one file that resides in the host OS file system.

Claim: [Users can] "Encapsulate an entire computing environment and move it

between computers as easily as copying a file." Using the example in the previous claim,

an entire VMOS and its applications are encapsulated in one file. This, file can be copied

from one computer to another, allowing an entire computing environment to be moved.

Claim: [VMware permits users to] "Share files and applications among virtual

machines using a virtual network within a PC." Each of up to four virtual machines can

be assigned a different network address. Each of the virtual machines can also access the

network card. This allows virtual machines to share files in many ways. For example,

virtual machines could use FTP or NFS to share files.

Claim: [Users can] "Run client-server or Web applications between virtual

machines on the same PC." Having multiple network addresses allows a client-server

relationship virtual machines. One virtual machine can be designated as the server and

another as the client. The client can then use the server's IP address to begin

communication.

Claim: [Users can] "Test the same application concurrently on different operating

system configurations, i.e. with different amounts of memory, different operating system

revisions, or different system settings." Each time a VMware application is started in the

31

host OS, a VM configuration must be loaded before running a VM. The configuration

file can be used to specify different system settings such as those described in the claim.

The configuration file can be changed without affecting the hard drive partition or virtual

partition on which the VMOS resides. This allows virtual machines with different system

configurations to test applications.

Claim: [Users can] "Dedicate a virtual machine to run untrusted applications

downloaded from the Internet." Since each virtual machine is isolated from other virtual

machines and the host OS, untrusted applications should only affect the virtual machine

in which they are running. This claim of isolation will be examined further in Chapter V.

Claim: [Users can] "Upgrade operating system software without losing

compatibility-- the legacy OS and its applications are simply transferred to a virtual

machine." This claim is self-explanatory.

Claim: [Users can] "Rely on a known stable hardware platform, defined by

VMware Virtual Platform. Virtual machines configured for this stable hardware platform

will correctly execute on any hardware that supports the virtual platform." When a

VMware user defines a configuration for a virtual machine, he specifies many things such

as how much memory the VM will have, whether it will have a network card, etc.

VMware abstracts the real hardware and presents a specific hardware platform to each

VMOS. For example, 10 different computers could have 10 different network cards.

However, all VMOSs are configured for the same type of network card, as defined by

VMware. Therefore, virtual machines that are configured to run with a network card will

run on any VMware virtual machine, no matter what the real network card in the machine

is.

2. Virtual Platform Architecture
VMware works in conjunction with a host operating system. The OS can be

either Linux or Windows NT. VMware has a "dual-mode personality" which is

illustrated in Figure 5. VMware runs both as an application in the host operating system

and as a VMM running directly on the hardware. VMware implements as much as

possible in the VMM because, since it sits directly on the hardware, it provides greater

32

performance than the application portion of VMware. The application portion of

VMware is used for the device-dependent portions of VMware. VMware did not have to

write their own device drivers because they simply use the device drivers of the host

operating system.

Apps 1 Apps:2

0S1 OS 2

VM 1 VM.Z

Apps 1 Apps 2
Host
OS

Apps

; °s i OS 2

VMware Virtual Platform ™

VJVIwa re Virtua IP latform ™ Host Operating System

Hardware Hardware
Directly to the hardware Through the Host Operating System

Figure 5. VMware Virtual Platform Dual Mode Personality From Ref. [7].

VMware Virtual Platform uses three software components to implement the-

"dual-personality" described above. They are the application, monitor, and driver.

These components and their relationships are illustrated in Figure 6 below.

VMOS + Apps

Virtual Machine

VP - Application

±
VP- Driver

HOST OS VP - Monitor

HARDWARE

Figure 6. VMware Virtual Platform Architecture.

33

The driver component is a device driver written for the host operating system. It

provides a tailored interprocess communication mechanism between the monitor and the

application. The host operating system is unaware that VMware's monitor interacts

directly with the PC's hardware. Additionally, the Virtual Platform runs as a normal

application process under the host operating system. The driver is only necessary

because the host OS is protected from user applications. If the host OS were not

protected from user applications, the application and monitor could communicate

directly.

The monitor component runs in privileged mode directly on the hardware,

allowing it to execute privileged instructions without appealing to the host operating

system. Without the monitor, VMware would resemble a simulator with much lower

performance. The monitor calls the application component through the device driver to

access system resources, including processor scheduling, physical memory management,

and device drivers.

The application component is installed like a normal application on the host OS.

It configures, launches, and administers virtual machines. After being called by the

monitor (through the device driver) to access system resources, the application makes the

appropriate calls to the host OS.

3. Isolation
VMware uses Intel hardware protection mechanisms to isolate virtual machines

from the host operating system and from each other. VMware says that the isolation

"does not make any assumptions concerning the software that runs within the virtual

machine. Even a rogue application or operating system is confined to the VMware Virtual

Platform" [Ref. 7]. In fact, the VMware product specification states that virtual machines

are isolated from faults.

Since virtual machines are not supposed to affect each other or the host OS,

crashes that occur in a virtual machine should not affect data or applications outside of

the crashing virtual machine. However, VMware does admit that any operating system

that uses an undocumented or undefined feature of the hardware could be incompatible.

34

Therefore, operating systems that rely on undocumented or unknown features of the

hardware may not work correctly, but such operating systems can not crash VMware or

interfere with other virtual machines.

4. Performance
Without high performance, VMware would not be a worthwhile product. By

directly executing instructions on the processor, VMware reduces performance overhead.

VMware claims that the "overhead of VMware Virtual Platform can be as low as 3%-5%

for certain computation-intensive benchmarks" [Ref. 7]. Most applications running in

virtual machines perform as if they were running on the real machine. Performance is the

main difference between VMware and traditional simulators and emulators.

B. VMWARE AS A "VIRTUAL VMM"

After analyzing VMware literature and installing and running the VMware

product, it is evident that VMware has developed a product that is close to a Type II

VMM for the Intel Pentium architecture. Screen shots from VMware running with both a

Linux host operating system and a Windows NT host operating system are on the

following page.

Even though the VMware product works very much like a Type II VMM, there

are many reasons why VMware should be considered a "virtual VMM" and not a true

Type II VMM. These reasons can be divided into two categories: hardware and software.

1. Hardware
The first hardware reason that VMware is not a true Type II VMM is that, as

mentioned in the previous chapter, the Intel processor is not truly virtualizable because of

the' seventeen sensitive, unprivileged instructions. Therefore, in order to implement a

VMM on the Intel architecture each of these instructions has to be emulated by software

in a VMM. However, emulating the instructions is not the hardest part. Since these

instructions are not privileged, they will not trap when executed by user-level code. This

means that the VMM must examine instructions before they are executed to see whether

an instruction is one of the seventeen problem instructions that will not generate a trap.

35

Figure 7. VMware Screen Shot Using Linux Host OS From Ref. [7].

file Eowet Settings ■'=yiaw Help

"'-Power Off. | "Reset- \ FiaSci^J^^jSuyartd-": |" ..;■..About ' | - Heb |

^r3/VJ*W*^*^*^tf^

■Xgfa: £ower '■■Soiiina»;'y»W- Help __-. ;.;;...

:- ÄJJ Shut Down..

ifi'siiaii . ^Ot^^Linuxvn*.VR., (frOUfrFZW^vmx-VM.

Figure 8. VMware Screen Shot Using Linux Host OS From Ref. [7].

36

The seventeen "problem" instructions are not the only roadblock for virtualizing

the Intel processor. Since the processor uses segmentation and rings in its design, it is

harder to virtualize because any VMM desiring to virtualize the processor must also

virtualize these features. One such problem is known as ring collapsing [Ref. 1]. A

VMM prevents access to the real system hardware by not running VM ring 0 code as ring

0 code in the real system. This means that ring 0 of the VM must be mapped to a less

privileged ring. The rings in the Intel architecture are both ordered and finite. There are

many schemes that can be used to solve the ring collapsing problem. The easiest is to

map ring 0 of the VM into the VMM, meaning that any ring 0 instruction is emulated by

the VMM. This is, in effect, a hybrid VMM. To avoid the poor performance of an

HVM, another strategy is to map two virtual, adjacent rings into the same physical ring.

This technique has the side effect of destroying the ring boundary between the two

adjacent layers that are used. Fortunately, most operating systems written for the Intel

processor only use two rings of the processor: ring 0 and ring 3 for the operating system

and applications respectively. This simplifies the ring collapsing problem because a

VMM would have three physical rings in which to emulate two virtual rings.

2. Software
The first software reason why VMware is not a true Type II VMM is that

VMware can not run some operating systems designed for Intel Pentium processors. If

VMware provided true virtual environments that are duplicates of the real machine, it

should be able to run any operating system that can run on the real machine. However,

when this thesis was written, VMware could not support the Windows 2000 Professional

Beta or the Solaris 7 Intel Edition as a guest operating system. VMware does plan to

support these operating systems in the future. In addition, there are many other operating

systems that are known not to work as VMware guest operating systems and will not be

supported by VMware. These include BeOS, Minix, OS/2, OS/2 Warp, QNX, SCO

Unix, and SCO UnixWare. It is not clear why these operating systems will not run in a

VMware virtual machine. VMware does say that any operating system that relies on

undocumented or undefined features of the PC hardware will likely be incompatible with

their product. However, the reason that these guest operating systems will not run in a

virtual machine probably has more to do with special idiosyncrasies in their

implementation than with undocumented or undefined instructions and features.

Furthermore, VMware may not support these operating systems as guest OSs because

their market share is so low that it is not cost effective to test and guarantee their

operation.

A second reason why VMware is not a Type II VMM is because the Intel Pentium

architecture does not meet Popek's essential VMM requirement. As stated in [Ref. 3], "a

virtual machine monitor may be constructed if the set of sensitive instructions for that

computer is a subset of the set of privileged instructions." For the Intel architecture, I

have demonstrated that this is not the case in the previous chapter.

Finally, Popek's characteristics of a VMM are: 1) the VMM provides an

environment that is "essentially identical" to the environment of the real machine, 2)

programs running in this environment show only minor decreases in speed, and 3) the

VMM is in complete control of system resources. Popek described "essentially identical"

as being a program running exactly the same as if it were run on the real machine, except

for possible timing dependencies or system resource availability. VMware does not have

this characteristic because a VMOS that runs under VMware may not work correctly if it

is configured to support the real hardware attached to the underlying real machine. In

order to make Windows detect hardware correctly in the VM environment, the system

administrator must install the driver that VMware tells him or her to. For example, even

though the computer has a 3COM NIC card, the driver specified to Windows may be

different. Another example of VMware not providing an identical environment is that

parallel ports are only uni-directional in the VM environment. This means that parallel

external Iomega Zip and Imation Superdisk drives can not be used.

38

V. CAN AN INTEL "VMM" BE SECURE?

In this chapter, I will examine several security issues for a VMM that is designed

for the Intel Pentium architecture. The chapter begins with a discussion on the VAX

Security Kernel to show that secure VMMs are possible. Second, security of the Intel

processor is covered. Third, security issues that arise when using the Intel architecture to

run VMMs are discussed. Fourth, security ramifications of using VMware to separate

mandatory security classes are examined. Finally, a better approach for using a VMM to

separate mandatory security classes on the Intel architecture is covered.

A. ARE SECURE VMMS POSSIBLE?

Before discussing whether or not the Intel processor can support a secure VMM, it

is necessary to show that secure VMMs are possible. A highly secure Type I VMM was

the VAX Security Kernel [Ref. 8]. The VAX Security Kernel was created to develop a

Type I virtual machine monitor for the VAX architecture. The system's hardware,

microcode, and software were designed to meet TCSEC Class Al assurance and security

requirements. The project also maintained standard VMS and Ultrix-32 interfaces to run

COTS operating systems and applications in virtual machines.

A security kernel is defined as hardware and software that implements the

reference monitor concept. [Ref. 9] A reference monitor enforces authorized access

relationships between the subjects and objects of a system. An implementation of a

reference monitor is called a reference validation mechanism. Three design requirements

must be-met by a reference validation mechanism:

1) The mechanism must be tamperproof.

2) The mechanism must always be invoked.

3) The mechanism must be small enough to be to subject to analysis and tests to ensure

completeness.

39

The VAX security kernel is a VMM that allows multiple virtual machines to run

concurrently on a single VAX system. The security kernel could support a large number

of simultaneous users and provided isolation and controlled sharing of sensitive data.

Since the VMM was a security kernel, many traditional features of VMMs, such as self-

virtualization and debugging of one VM from another were not implemented in order to

reduce kernel complexity and make the kernel highly secure.

The VAX processor, much like the Intel Pentium processor, contained several

instructions that were sensitive but not privileged. It also has four rings like the Intel

processor. Since this project was conducted by Digital Equipment Corporation, the

manufacturers of the VAX processor, the security kernel designers had the luxury of

modifying the VAX processor microcode in order to make it virtualizable. Hall et al.

[Ref. 10] describe the four instructions that prevented virtualization on the VAX

processor: CHM, REI, MOVPSL, and PROBE. The CHM instruction switches to a mode

of equal or increased privilege. The REI instruction switches to a mode of equal or

decreased privilege. The MOVPSL instruction is used to read the Processor Status

Longword (similar to the machine status word in the Intel architecture). The PROBE

instruction is used to determine the accessibility of a page of memory. These four

instructions read or write one of the following pieces of sensitive data: the current

execution mode, the previous execution mode, the modify bit of a page table entry, and

the protection bit of a page table entry. With only four problem instructions, the VAX

processor did not have as many virtualization problems as the Intel processor does.

In order to make the VAX processor virtualizable, DEC did not want to simply

modify sensitive, unprivileged instructions to be privileged because standard VAX

operating systems would not be able to run. An important project goal was to be able to

run standard operating systems on the processor that supported the VMM in order to

provide VMM users and the DEC sales force with flexibility in choosing their hardware

and software. Furthermore, customers were already familiar with and had applications

for VMS and Ultrix-32. Therefore, DEC used a more sophisticated approach. Some of

40

the changes they made included defining a new VM mode bit, defining a new register

called VMPSL, and defining a VM-emulation exception. DEC also changed microcode

in order to address the four problem instructions described above.

DEC used ring compression to avoid some modifications to the processor. Ring

compression was implemented entirely in software and maps rings 0 and 1 (kernel and

executive) of the VM to ring 1. This breaks down the protection between these two

layers but was thought to be the simplest and most secure way to virtualize the four rings

of the VAX processor. This choice had little security impact since, although the VMS

operating system for the VAX used all four rings, all three inner rings were in fact used

for fully trusted operating system software.

Some virtual machine monitors (including, especially, IBM's VM/370) virtualize

not only the CPU, but also the I/O hardware. Virtualizing the I/O hardware allows a

VMOS to run almost unmodified. The VAX I/O hardware was difficult to virtualize

because its I/O mechanisms read and write various control and status registers in the I/O

space of physical memory. To overcome this difficulty, the VAX security kernel I/O

interface used a special kernel call mechanism that was optimized for performance. To

use this mechanism, a virtual machine executed a Move To Privileged Register (MTPR)

instruction to a special kernel call register. The MTPR instruction trapped to software in

the security kernel that performed the I/O. This new I/O interface meant that untrusted

device drivers had to be written for all VMOSs that would run under the VMM. In

choosing this strategy, the VAX security kernel development team was guided by the

goal of making the operating system developer's task of supporting a virtual machine

comparable to the task of supporting any other new VAX processor. Since each new

VAX processor required some I/O interface and driver support by each operating system,

the addition of a kernel call I/O interface was felt to be a reasonable design choice.

The VAX security kernel applies mandatory and discretionary access controls to

virtual machines. The kernel assigns every virtual machine an access class consisting of

a secrecy class (based on the Bell and LaPadula model) and an integrity class (based on

41

the Biba model). The kernel also supports access control lists on all objects including

real devices, disk and tape volumes, and security kernel volumes. The VMM security

kernel is very different from a typical secure operating system because the subjects and

objects are virtual machines and virtual disks, not files and processes. Files and processes

are implemented by each VMOS.

The two kinds of subjects in the VAX security kernel are users and virtual

machines. Users communicate through a trusted path to a server process. The server

processes are trusted and run only within the security kernel. The users minimum and

maximum access class, the terminal's minimum and maximum access class, the user's

discretionary access rights and privileges, and the privileges exercisable from the terminal

all determine what the server can provide to the user. The other type of subjects, VMs,

are untrusted subjects that run a VMOS. The VMOS is operated normally and will not

affect the security of other virtual machines or the security kernel even if the operating

system is penetrated.'

When a user logs into the security kernel, the VMM establishes a session between

the user's terminal line and the user's server. To connect to one of the VMs, the user

issues a CONNECT command that specifies the name of the VM. If the connection is

authorized, the security kernel suspends the session with the server and establishes a

session between the user and the requested virtual machine. Virtual machines can be set

up to run single users or multiple users.

The VAX security kernel supports three types of objects: real devices, disk and

tape volumes, and security kernel volumes. Real devices include those that can contain

or transmit information and must be controlled by the TCB. These include disk drives,

tapes, printers, terminal lines, and network lines. The contents of some disk and tape

volumes are controlled completely by a virtual machine. Other disk volumes have a

VAX security kernel file structure and can not be directly accessed by a VMOS. These

are called VAX security kernel volumes. VAX security kernel volumes contain VAX

security kernel files that are organized as a flat file system. These files are used for many

42

things including the implementation of virtual disk volumes for use by virtual machines

and storage of long-term system databases such as the audit log and the authorization file.

Since the VAX security kernel was designed to meet Class Al requirements, it

had to enforce mandatory access controls. Each kernel object is assigned a sensitivity

label, called an access class, consisting of a secrecy and an integrity class. Both of these

classes are subdivided into a hierarchical level and a category set. The kernel supports

256 secrecy levels, 256 integrity levels, 64 secrecy categories, and 64 integrity categories.

To design the VAX security kernel, levels of abstraction were used to help reduce

complexity and make specifications more precise and understandable. A layer only

depends on layers below it. This prevents deadlock by removing loops [Ref. 11]. The

layered design also allowed the kernel developers and testers to analyze the correctness

and security of each layer independently and to be sure that there were no complex

interactions between kernel components that might jeopardize system security. Table 3

contains the name of each layer and a brief description from [Ref. 8]. .

The designers of the VMM security kernel realized that highly-secure systems are

often hard to use because of their limited interfaces. Interface features are large and hard

to verify, preventing them from being included in the kernel. To overcome this problem,

the designers created two separate command sets: server commands and administrative

commands. The secure server commands are all implemented in trusted code. These

commands include those that control terminal connections to virtual machines. Some of

these commands are CONNECT, DISCONNECT, RESUME, and SHOW SESSIONS.

The SECURE, or administrative commands, are commands that help manage the system.

These commands are issued and parsed in a VMOS.

A major goal of this development effort' was to receive a Class Al rating under

the TCSEC. In addition, the designers were also interested in achieving good overall

performance and compatibility with a large amount of existing software. This second

goal was motivated because no Class Al system, including Honeywell's STOP kernel for

the SCOMP [Ref. 4] and Gemini Computers' GEMSOS [Ref. 5], had ever been built that

43

was compatible with an existing body of application software. Even after the

modification of the processor microcode, the VAX security kernel only allowed virtual

machines to run at 47-48% of their performance on a real machine. Although the project

was canceled before many performance enhancements could be tested, DEC admitted that

major improvements in performance would be difficult without modifying the microcode

of the processor or the operating systems that run in the virtual machine [Ref. 10].

DEC's efforts did lead to several conclusions about virtualization:

1) Every ring of a processor can be emulated, but this is often not necessary.

2) Emulating a start I/O instruction is simpler and cheaper than emulating memory-

mapped I/O.

3) Defining the VM as a particular processor or family of processors makes the

VM more portable than if it were a reflection of the actual hardware. For

example, if a VM is defined to be a Pentium processor, the VM will work on a

Pentium II or Pentium III processor.

4) Performance of a VM suffers when sensitive instructions must be made to trap

to emulation software.

5) There are alternatives to modifying the microcode support for every privileged

instruction to meet the needs of the VMM.

6) If a VMM is a security kernel, handshakes between the VMM and VM's must

be scrutinized because the VMM can not trust the VM operating systems.

These conclusions should be considered in any attempt to design a secure Type I

VMM for the Intel Pentium architecture.

B. HOW SECURE IS THE INTEL ARCHITECTURE?

The 80x86 architecture (including Intel and clones) was clearly the choice for trusted

systems during the 1980's and early 1990's. Some of the high-assurance trusted products

that used the 80x86 processors were the Boeing MLS Lan (Al) [Ref. 13], Gemini Trusted

Network Processor (Al) [Ref. 5], Verdix VSLAN (B2) [Ref. 14], TIS Trusted

44

Layer Name

Users

Definition

VMOS
Secure Server

Virtual VAX

Kernel Interface

Virtual Printers

Includes untrusted application programs that run on the
VMOS and humans who communicate with the secure
server through the trusted path
The virtual machine's operating system
Implements the trusted path for the security kernel, logs
users in and out, provides security-related administrative
functions; everything above this layer is untrusted
Completes the virtualization process by emulating sensitive
instructions and delivering interrupts and exceptions to the
virtual machine
Implements virtual controllers for virtual I/O devices and the
security function controller
Implements virtual printers for each VM and multiplexes the
real physical printers among virtual printers

Virtual Terminals Implements virtual terminals for each VM and manages
physical terminal lines

Volumes

Files-11 Files
Auditing
Higher-Level Scheduler

VM Virtual Memory

VM Physical Memory

I/O Services
Lower-Level Scheduler

Hardware-Interrupt Handler

Implements VAX security kernel and exchangeable volumes
and provides registries of all subjects and objects
Implements a subset of the ODS-2 file system'
Provides the facilities for security auditing and alarms
Creates the abstraction of level-two virtual processors
(vp2s); dedicated vp2s are used by the Secure Server layer
and bindable vp2s are used by virtual machines
Implements the shadow page tables that are needed to
support virtual memory in virtual machines
Manages real physical memory and assigns it to virtual
machines
Implements device drivers that control the real I/O devices
Creates the abstraction of level-one virtual processors (vpls)
that are the basic unit of scheduling for the system; vpls are
intended to be very inexpensive processes for use within the
kernel
Immediately above the VAX hardware and modified
microcode; contains the interrupt handlers for the various I/O
controllers and certain CPU-specific code

Table 3. Layers In The VAX Security Kernel Design.

4 A summary of the Files-11 ODS-2 structure can be found in the appendices of a DEC publication [Ref. 12].

45

Xenix (B2) [Ref. 15], and the XTS-300 (B3) [Ref. 4].

1. Hardware Rings
The four rings of the Intel architecture are a benefit to secure development. Rings

are a generalization of the original supervisor/user design for hardware. Some of the

benefits of hardware rings as described in [Ref. 16] are: users can create arbitrary,

protected subsystems that can be used by others; system or kernel code can be

implemented in layers that are enforced by the hardware; and the user can protect himself

while debugging his own programs. Creating protected subsystems allows a reference

monitor as described by Anderson in [Ref. 17]. Any secure VMM must be both

tamperproof and non-bypassable. Since the Intel processor protects operating system

code, one can be assured that a VMM can not be tampered with. Additionally, if a VMM

is designed to be non-bypassable, one is assured that the VMM will always be invoked.

The second benefit of rings is that a layered kernel can be implemented with

hardware rings. A layered kernel has many security advantages. It limits the propagation

of errors, making a secure implementation easier to achieve. For example, changes in

ring 1 of a TCB or OS would not effect the kernel that has already been certified at ring 0.

However, for performance reasons, all layers of a kernel are normally in ring 0.

2. Operating System Design Issues
Typically, much more emphasis has been placed on assurance of a system's

software components rather than its hardware components. The hardware components of

a system are often assumed to operate securely if they are used correctly. However, this

may not always be the case. This section discusses "pitfalls" of the Intel architecture that

were discovered by Sibert et al. in [Ref. 18]. System designers for the Intel architecture

should consider these when implementing secure operating systems because they can lead

to security problems if handled incorrectly.

As a result, Sibert et al [Ref. 18] conducted an in-depth analysis of the 80x86

processor families (included Intel and other clones) to look for any architectural

properties that could have "unexpected, and undesirable, results in a secure computer

system." Although the authors did not find any "gross security flaws," they did find

46

several features that introduce previously unreported covert channels and other problems

in the Intel architecture.

One potential security problem that the authors found is undocumented

instructions. At the time of their examination, Intel had an Appendix H to their

programming manual that contained functions that were explicitly undocumented and

available only under strict non-disclosure protection. It was not possible for the authors

to test these undocumented features.

The architectural "pitfalls" that were identified in this paper are not security flaws

in the processor. The pitfalls are problems that can cause security flaws in a system if the

operating system does not correctly handle the pitfalls. For example, in many cases, if a

TCB virtualized the register that causes a pitfall, a covert channel would be closed. Most

of the pitfalls that were discussed allow possible covert channels, both timing and

storage. A covert channel is a mechanism used to transfer information from one process

to another that is not intended to transfer information [Ref. 19]. If a covert channel

exists, a high subject can signal a low subject and bypass the security policy enforcement

mechanism. These pitfalls included the TS flag, FPU context, segment accessed bit,

segment attributes, page access visibility, internal register visibility, debug register

values, time stamp counter, performance counter, cache and TLB, and undefined values.

Sibert et al. discussed each of these pitfalls in [Ref. 18]. Many of these pitfalls were

identified in very early versions of the Intel processor such as the 386 and 486. However,

most of these pitfalls still exist in the current Pentium architecture because Intel has

remained backward compatible all the way to the 8086, a processor developed in the late

1970's.

An example of a pitfall that still remains today is the TS bit of control register 0.

The SMSW instruction stores the lower 16 bits of control register 0 and makes the TF

flag visible. Sibert et al describe a detailed example of a channel using the TF flag.

A variation of this pitfall is also still present in the Intel Pentium architecture. As

mentioned, the TS bit is visible to unprivileged tasks. However, even if the bit was not

47

visible, the state of the bit could be determined by the duration of a floating point

instruction. The TS flag helps minimize the number of times the FPU state must be

saved. If the current task was the last task to use the FPU, the state of the FPU does not

need to be saved. However, if a new task is using the FPU, the state of the FPU must be

saved and the FPU is re-loaded from the current task's FPU context. If the FPU is saved

and then re-loaded, it will take much longer than if these actions were not necessary.

Thus, information flow is possible between two tasks because of the optimization of the

FPU context-saving process.

In addition to the pitfalls just described, Sibert et al. [Ref. 18] also describe some

of the 102 reported flaws on different versions of the Intel 80x86 architecture. Most of

these flaws would probably not translate into exploitable security flaws. However, some

of the flaws did. The authors gathered 102 reports of flaws, 17 of which are security

relevant. Nine of the flaws were denial of service flaws that could halt the processor. All

of the flaws were found on the Intel Pentium and earlier processors. The analysis showed

that Intel did fix most of these problems in each subsequent processor release. However,

current Intel processors may have new flaws that are security relevant.

C. THE SECURITY OF INTEL VISUALIZATION

Since the Intel Pentium architecture is not truly virtualizable, a bit of "trickery" is

required in order to make a "virtual" VMM run on the architecture. The trickery is

required to detect any instructions that are sensitive but not privileged before they are

executed by a VM. Several different techniques could be used to accomplish this. I will

describe the techniques that Lawton has proposed [Ref. 20].

1. Pure Emulation
The first technique is pure emulation. Emulation is a technique that maps one

system architecture into another system architecture. By modeling a large part of the x86

instruction set in software, emulation allows x86 operating systems and applications to run

on non-x86 platforms. Lawton is the leader of a software project called Bochs [Ref. 21].

Bochs emulates a majority of the x86 CPU, related AT hardware, and a BIOS and is able to

48

run DOS, Windows '95, Minix 2.0, and other x86 operating systems on both x86 and non-

x86 platforms. Some of the architectures that Bochs can run on include Sparc, PowerMac,

SGI, and x86. Bochs is able to run approximately 1.5MIPS on a 400Mhz PII Linux

machine. Bochs is closer to a complete software interpreter machine than a VMM. The

disadvantage of using this technique to virtualize the Intel architecture is significant

performance degradation since no instructions are ever executed directly on the hardware.

There are some advanced techniques,. such as dynamic translation, which can improve

performance. Dynamic translation allows sequences of small, Intel architecture code to be

translated into native-CPU code "on-the-fly." Since the native code is cached, it can run

significantly faster. However, the performance will never achieve that of a Type I VMM.

2. OS/API Emulation
A second technique proposed by Lawton is OS/API emulation [Ref. 20].

Applications normally communicate with an operating system with a set of APIs. OS/API

emulation involves intercepting and emulating the behavior of the APIs using mechanisms

in the underlying operating system. This allows applications designed for other x86

operating systems to be run. This strategy is used in a project called Wine. Wine is "an

implementation of the Windows 3.x and Win32 API on top of X and Unix" [Ref. 22]. Wine

has a program loader that allows unmodified Windows 3.1/95/NT binary files to run on

Intel x86-based Unix machines, such as Linux, FreeBSD, and Solaris. Wine allows

application binaries files to run natively, meaning that Windows executable files can be run

in Unix environment without modification. Running binaries natively allows better

performance than the pure emulation technique described above. However, OS/API

emulation only works on members of the x86 OS family for which the APIs have been

emulated. Furthermore, OS/API emulation is very complex. A VMM is less complicated

and requires less change as an OS evolves from release to release.

3. Virtualization
A third technique is virtualization. Most hardware is only designed to be driven

by one device driver. The Intel Pentium CPU is not an exception to this rule. It is

designed to be configured and used by only one operating system. Features and

49

instructions of the processor designed for applications are generally not a problem for

virtualization and can be executed directly by the processor. A majority of a processor's

load comes from these types of instructions. However, certain sensitive instructions are

not privileged in the Intel architecture, making it very difficult for a VMM to detect when

the instructions are executed. A strategy for virtualizing the Intel architecture would be

as follows5:

1) Non-sensitive, unprivileged'application instructions can be executed directly on the

processor with no VMM intervention.

2) Sensitive, privileged instructions will be detected when they trap after being executed

in user mode. The trap should be delivered to the VMM that will emulate the

expected behavior of the instruction in software.

3) Sensitive, unprivileged instructions present a problem because the processor does not

offer natural hardware protection against them. They must be detected so that control

can be transferred to the VMM.

The hardest part of the virtualization strategy described above is protecting

against the seventeen problem instructions that were described in Chapter III. Lawton

describes how this is accomplished for FreeMWare [Ref. 20]. It analyzes instructions

until one of the following conditions is encountered:

1) A problem instruction.

2) A branch instruction.

3) The address of an instruction sequence that has already been parsed.

If case 1 or 2 is encountered, a breakpoint must be set at the beginning of the

problem or branch instruction. If case 3 is encountered, execution continues as normal

since this code has been analyzed already and necessary breakpoints have been installed.

5 This is probably the strategy that VMware used in order to virtualize the Intel architecture. Lawton, the author of

the Bochs software, is also leading an effort to create an open source version of VMware. The title of this project

is called FreeMWare [Ref. 20].

50

Code is allowed to run natively on the processor and it continues to run until it

reaches a breakpoint. If the breakpoint occurred because of a problem instruction, its

behavior is emulated by the VMM. If the breakpoint occurred because of a branch

instruction, it is necessary to single step through its execution and begin analyzing

instructions again at the branch target address. If the target address is not computed and

has already been analyzed and marked as safe, then the branch instruction can also be

marked as safe and it can run natively on the processor on subsequent accesses.

Computed branch addresses require special attention. These instructions must be

dynamically monitored to ensure that execution does not branch to code that has not been

analyzed. A table might be used to keep track of the breakpoints. It might include the

type of condition for which the breakpoint was set: a problem instruction, a branch

instruction, or the address of an instruction that has already been parsed.

Lawton's strategy also accounts for the possibility that some instructions may

write into memory, possibly into the address of instructions that have already been

analyzed and marked as safe. The paging system is used to prevent this by write

protecting any page of memory in the page tables that has already been analyzed and

marked as safe. All page entries that point to the physical page with analyzed code would

have to be write protected since multiple linear addresses can be mapped to the same

physical page. When a write-protect page fault occurs, this gives the VMM the

opportunity to unprotect the page and step through the instructions. If a problematic

instruction is written into a page while stepping through instructions, a breakpoint should

be installed before that instruction. Finally, the page should be write-protected again. In

cases where instructions cross a page boundary, both pages are write-protected and the

modified code will be handled in both pages. Tables are used to track which instructions

have been analyzed. The tables use the page size for performance reasons. Lawton

describes more details of how FreeMWare is being implemented in his paper [Ref. 20].

Some of the issues discussed include: pass-through I/O devices, timing issues,

virtualizing descriptor loading. Each of these are described below:

51

a. Pass-Through I/O Devices
A guest OS can only use devices that are provided to it by the

virtualization environment. Thus, a guest OS will not be able to use hardware that is not

supported by a host OS driver. However, it may be useful to allow a device driver in the

guest OS to drive hardware for a device that is not supported by the host OS. For

example, a Linux host OS will not support a Winmodem. This means that a VM running

Windows that runs Linux as its host OS can not use a Winmodem since it is not

supported by the host OS. A solution to this is called pass-through devices. Pass-through

devices could allow a guest OS to communicate with devices using a pass-through

mechanism that handles I/O reads and writes. It is difficult to implement pass-through

I/O devices securely because control of the real hardware control is turned over to the

VMOS.

b. Timing
A VMM for the Intel architecture must also consider timing issues. The

VMM must accurately emulate the system timers. Every time slice of native code

execution is bounded by an exception that is generated by the system timer. This

exception means that the execution time slice is over. The exception vectors to a routine

that is defined in the VMM's IDT for a guest OS. A mechanism is needed that measures

the time between these exceptions to emulate an accurate timer. On Intel Pentium

processors and later, performance monitoring could be used. The RDTSC, Read Time

Stamp Counter, instruction gives an accurate time stamp reading that can be used. The

instruction is also executable in CPL 3, allowing efficient use in user-level VMM code.

c. Virtualizing Descriptor Loading
A VMM for the Intel architecture must also have its own set of LDT,

GDT, and IDT tables. These are necessary for two reasons. First, it allows the segment

register mechanisms to work naturally. Second, it allows the VMM to have its own set of

exception handlers. A time slice is up when the system timer invokes a routine in the

private IDT. When this occurs, the VMM must revert back to the tables that are used by

the host OS, meaning that the host OS is not aware of the virtualization environment.

52

Since all privilege levels (0-3) in a VM are mapped into CPL 3, the CPL is not

high enough when trying to load code that is less than CPL 3. CPL 3 code can load

descriptors as expected as long as the GDTR and LDTR registers point to the guest OS's

descriptor tables. When running system code in CPL 3, exceptions are generated when

loading a descriptor with that has CPL < 3. This does not occur when system code is

executed at CPL 0 as it expects. In order to solve this problem, one must trap and

emulate instructions that load the segment registers when running at CPL < 3. One must

also virtualize all instructions that examine segment registers with PL < 3 because they

may look at the RPL field which will not reflect the expected privilege level.

Another technique that will help solve this problem is the use of a private GDT

and LDT for the virtualization of code at CPL < 3. Since, the instructions that reference

the GDTR and LDTR are emulated, they can be loaded with values that point to the

private GDT and LDT. The private descriptor tables would start out empty and generate

exceptions when a segment register loads. Each time this happens, a private descriptor is

generated that allows the next segment register load to execute natively. Every time the

GDTR and LDTR are reloaded, the private descriptor tables are cleared.

D. ADDITIONAL INTEL VIRTUALIZATION INSIGHTS

In addition to the details of the FreeMWare project, another useful resource on

how Intel virtualization may be accomplished is the Disco prototype, mentioned in the

introduction to this thesis. Disco was developed at Stanford University on the Stanford

FLASH shared-memory multi-processor. [Ref. 2] The Disco project is an implementation

of a Type I VMM for the Flash multi-processor. It runs several different commercial

operating systems in virtual machines to provide high-performance system software.

Much like VMware, Disco was able to overcome the high overhead and poor resource

sharing that is typical of both Type I and Type II VMMs. Some of the key insights of the

Disco implementation that would be applicable to virtualizing the Intel Pentium

architecture are described here.

53

1. Virtual CPUs
Since most machines only use one processor, multiple VM's running on the same

hardware each have a virtual processor. This is an abstraction to make each VM and its

associated VMOS think that it has the sole use of the real processor. In order to schedule

a virtual CPU for a VM, the VMM needs to set the real machine's registers to those of the

virtual CPU and jump to the program counter of the virtual CPU. A data structure is kept

for each virtual CPU that contains register contents, TLB contents, and other state

information of the virtual CPU when it is not running on the real CPU. If a virtual CPU

is running on the real CPU, a VM trap, such as a page fault, system call, or bus error,

causes the monitor to emulate the effect of the trap on the currently scheduled virtual

processor. After the currently scheduled VM's time slice is up, the virtual processor

information is saved and the next virtual processor is swapped into the real processor.

2. Virtual Physical Memory
To virtualize physical memory, an extra level of address translation is added.

This level maintains VM physical-to-machine address mappings. Virtual machines are

given physical addresses that start at address zero and continue to the size of the VM's

memory. These physical addresses could be mapped to machine addresses used by the

Intel processor using the hardware-reloaded TLB of the Intel processor. The VMM

manages the page table and does not allow the VM to insert entries in it. When the

VMOS tries to insert a virtual-to-physical mapping in the TLB, the VMM emulates this

by translating the physical address into the corresponding machine address and inserting

this into the TLB.

3. Virtual I/O Devices
The VMM must intercept device accesses from virtual machines and forward

them to physical devices. Instead of trying to use every device's real device driver, it is

easier to use one special device driver for each type of device. Each device has a monitor

call that is used to pass all command arguments to the VMM in a single trap. Many

devices such as disks and network interfaces require direct memory access (DMA) to

physical memory. Normally these device drivers use parameters that include a DMA

54

map. The VMM must intercept these DMA requests and translate physical addresses into

machine addresses.

4. Virtual Network Interface
In order for VM's to communicate with each other, they use standard distributed

protocols such as NFS. Disco manages a virtual subnet that allows this communication.

The virtual subnet and networking interface used a copy-on-write strategy for transferring

data between VMs to reduce the amount of copying. Virtual devices use ethernet

addresses and do not limit the maximum transfer unit of packets, resulting in much faster

communication.

E. PROBLEMS WITH CURRENT INTEL VMMS AND MANDATORY
SECURITY ENFORCEMENT

If a computer system is to be a high-assurance secure computing system, it must

be able to enforce security policies correctly, even under hostile attack. Examples of this

type of system are those that are at least Class B2 or an equivalent level in the Common

Criteria [Ref. 23]. Additionally, the systems' protection mechanisms must be structured

and well-defined. In both an open and closed environment, the Yellow Book [Ref. 9]

states that a system must be Bl or higher in order some users that access a system are not

authorized for all categories. Even if Yellow Book requirements are not followed, two

requirements should be met when dealing with classified information. First, labels are

required when dealing with classified information. Second, for environments with

multiple user clearances, a very effective protection mechanism is needed.

Current VMMs for the Intel architecture, such as VMware and FreeMWare, do

not meet these requirements and they have never been evaluated as secure products

(although a product does not have to be evaluated to be secure). Even though neither is

designed to be secure, VMware does claim that their product can "isolate and protect each

operating environment, and the applications and data that are running in it" [Ref. 7].

They also say that they do "not make any assumptions concerning the software that runs

within the virtual machine. Even a rogue application or operating system is confined to

55

the VMware Virtual Platform." Given these claims, it is worthwhile to determine how

well current VMMs can enforce isolation between VMs to support a mandatory security

policy. It should be noted that the following analysis is based on assumptions of how

VMware is accomplishing virtualization. The following sections describe some of the

potential problems that would arise if VMware was to be used to separate mandatory

security levels.

1. Resource Sharing
One of the simplest problems results from resource sharing between virtual

machines. If two virtual machines have access to a floppy drive, information can flow

from one VM to the other. This could be accomplished by simply copying files from the

VM to the floppy so that other VM's could also access the files.

2. Networking and File Sharing
Another similar problem results from VMware's support of networking and file

sharing. Using this support, two virtual machines at different security levels could

communicate information to each other in a variety of ways. Some of these include

Microsoft Networking, Samba, Novell Netware, Network File System, and TCP/IP. For

example, using TCP/IP, a VM could FTP to either a host OS or guest Linux OS and

transfer files.

3. Virtual Disks
VMware's ability to use virtual disks is also a problem. A virtual disk is a single

file that is created in the host OS and used to encapsulate an entire disk, including an

operating system and its applications. With this ability, anyone with access to this file in

the host operating system could copy all of the information in this virtual disk to any

sufficiently large type of external media. Once an attacker had the file, he could install

VMware on his own operating system and open the virtual disk that contains all of the

information.

Another problem with the virtual disk is that any OS application with read access

to the file that contains the virtual disk in the host OS can examine the contents of all of

the information on that virtual disk. For example, using Linux as the host operating

56

system, file utilities such as grep can be used to search for a specific string in the virtual

file system. To test this vulnerability, Windows NT was booted as a VMware-supported

guest OS on a Linux host OS. In NT, a text file with a known string such as "Top Secret

Data" was created. Using the Linux host operating system, the grep command was used

to search for this string in the approximately 300 MB virtual disk. The search succeeded

in seconds. A solution to both this and the previous problem would be to not allow

unauthorized users access to this virtual file. However, this would require a secure host

OS.

4. Program Utilities
There is an alternative way to access data in a VMware virtual disk. VMware

provides a utility called vmware-mount for a Linux host operating system. This utility

allows virtual disks to be mounted as if they were regular hard disk partitions. Thus, if a

user has permission to read a virtual hard disk file, the user can mount the disk and read

file that it contains. The current version of this utility does not allow a virtual hard disk

to be read and written at the same time. This means that this utility would only work if

the virtual disk it is trying to access is not currently being used by a virtual machine.

One of the biggest security issues in VMware comes from another tool that it

provides called VMware-Tools. VMware-Tools are available for each different type of

guest operating system. These tools provide several nice features to support

interoperation between virtual machines. Any user with the ability to run VMware can

install the VMware tools in their virtual environment. For example, after installing

VMware-Tools in a guest OS, the cursor can move freely between the host OS desktop

and those of the VMs that are running as applications under of it. Another feature that

these tools provide is the ability to cut and paste between virtual machines using

something similar to the Windows clipboard. Text from any type of virtual machine can

be copied and pasted into another virtual machine. It is not difficult to see the potential

security danger if virtual machines were running at different mandatory security levels

and information could be passed between windows.

57

5. Host Operating System
A host of security vulnerabilities emerge since both of the potential host operating

systems for VMware (Linux and Windows NT) are weak platforms. Both of these

operating systems have many of the features of a Class C2 operating system. However,

the current versions of both of these operating systems have never been evaluated as such.

Additionally, Class C2 systems do not enforce MAC policies. Since the security of

VMware and its guest operating systems are a layer above the underlying operating

system, it can not be expected to be any more secure than the least secure layer it depends

on.

A security vulnerability in the VMware interface was announced on June 22nd,

1999. VMware was notified of a security problem in the first release: VMware for Linux

version 1.0.1 (and all previous releases). The security hole allows a buffer overrun

attack to result in unprivileged root access to the Linux host operating system. To exploit

the security hole, a user must start VMware. Although the security alert does not

describe how to exploit the hole, it does say that it must be done before powering on a

virtual machine. Multi-user Linux systems with VMware installed would be affected the

most by this attack. However, since this attack captures the whole system, no guest OS is

safe either. A user of the system could execute the attack to gain root access on the

machine. Once root is obtained, the user would be free to do anything he pleases.

6. Serial and Printer Ports
Another security problem in VMware occurs in the implementation of serial and

printer ports. Before starting up a virtual machine, a configuration of the guest OS must

be loaded or created. One of the options for parallel and serial ports in this configuration

is for output of all parallel/serial ports to go to a file in the host operating system. If a

printer is configured in the guest OS, the output will be sent to a file in the guest OS

when the user tries to print something. This could be an easy way for users to transfer

information from a high security class into the host OS. Anyone on the system could

read the printer file in the host OS if its permissions were public.

58

F. A BETTER APPROACH FOR USING AN INTEL VMM TO SEPARATE
MANDATORY SECURITY LEVELS

As the previous section demonstrated, current VMMs for the Intel architecture

should not be used to separate mandatory security levels. Furthermore, it would not be

wise to try to implement a high assurance virtual machine monitor (greater than B2) as a

Type II VMM. This is because a Type II VMM must still operate in a host operating

system. This means that a new highly secure host operating system for the Intel Pentium

architecture would also have to be written. Layering a highly secure VMM on top of an

operating system that is clearly not penetration resistant and the security controls of

which can be circumvented would not provide a high level of security. This is because

flaws in the underlying operating system could likely be exploited that would allow the

security in the Class B2 or greater VMM to be bypassed.

A better approach to designing a VMM for the Intel architecture would be to build

a Type I VMM as a microkernel. The Type I VMM would provide virtual environments

on the machine. The VMM would intercept all attempts to handle low-level hardware

functions from the VMs. Thus, the VMM would control all of the devices and system

features of the CPU. The VMM would detect these attempts to use low-level hardware

functions and transparently emulate their behavior for the virtual machine. The

microkernel could allow each VM to choose among a specific set of devices. The devices

may or may not be the real set of devices that are installed on the system.

There are two advantages to using a Type I VMM to separate mandatory security

levels. First, a Type I VMM can provide a high degree of isolation between VMs.

Second, all existing operating systems for the processor and their applications can be run

in this highly secure environment without modification.

The biggest disadvantage to a Type I approach is that device drivers must be

written for every device that needs to be used by the system. This is a problem because

there are many different types of peripherals that can be hooked up to a system.

Furthermore, each peripheral has many different manufacturers and each manufacturer's

59

product requires different drivers. A Type II VMM does not have this problem because it

simply uses the drivers that are already written for the host OS. This disadvantage can

be overcome when developing a secure solution by only supporting certain types and

manufacturers of devices. For example, VMM designers may decide that they do not

want the ability to hook up parallel disk drives to the system. Therefore, no drivers for

parallel port drives need to be written. Additionally, drivers would not have to be written

for all manufacturers of a particular device. For example, the designers could restrict

supported printers to a particular type from a particular manufacturer. It is not out of the

ordinary for highly secure solutions to require specific types of hardware.

If the secure VMM was implemented as a Type I VMM, the secure microkernel

could be very small. This would make it easier for the VMM to meet the Reference

Monitor verifiability requirement. For example, the VAX security kernel was only about

50,000 lines of code. Sufficient attention to constraining information flow between VMs

combined with engineering inspection and testing techniques sufficient to demonstrate

the absence of trap doors in the VMM would result in a secure VMM.

A tremendous advantage to using the VMM approach to separate mandatory

security levels is that popular commercial operating systems and applications could be

supported. It may be difficult to convince commercial software companies to port their

software to a new platform if the market will be small. A VMM eliminates the need to

port software and allows all of the functionality that computer users are used to having on

their own desktop. This saves a tremendous amount of development and cost.

Before trying to implement a secure Type I VMM for the Intel architecture, it

might be advantageous to convince a chip manufacturer to slightly modify the Intel

Pentium architecture for the project. Two alternative modifications to the processor

could make virtualization easier. First, all seventeen unprivileged, sensitive instructions

of the Intel architecture could be changed into privileged instructions. This would make

virtualization easier because the VMM would no longer have to look ahead for possible

sensitive instructions. All instructions would naturally be able to trap so that the VMM

60

could emulate the behavior of the instruction. However, this solution may cause

problems in current COTS operating systems because instructions that were non-

privileged will now trap when they did not previously.

The second alternative is to implement a trap on op-code instruction. [Ref. 1] This

solution adds a new instruction to the architecture that allows an operating system to

declare instructions that should be treated as if they were privileged. This alternative

makes virtualization easier without affecting current COTS operating systems.

If one of the alternatives described above is not implemented, virtualizing the

Intel architecture is much harder. This is because additional code is required to force

sensitive, unprivileged instructions to trap so that they can be handled by VMM software.

The additional code raises two security concerns. First, the security kernel may not be

considered minimal because of the extra virtualization code. Second, virtualization of the

unmodified processor requires checking every instruction before it executes to determine

if it is one of seventeen problem instructions. If undocumented instructions exist, the

VMM may not operate as expected because it will not recognize an undocumented

instruction. Furthermore, if an undocumented instruction, or sequence of instructions,

exists that cause the processor to transition into an insecure state, an attacker may be able

to bypass the VMM.6

Modifying the problem instructions of the Intel architecture or adding a trap on op-

code instruction will make a Type I VMM more secure and easier to build. The Intel

architecture has many features that can be used to implement highly secure systems. The

best way to implement a secure VMM on the Intel architecture would be to build a new,

high assurance Type I VMM on a slightly modified processor. Even though device drivers

6 To ensure that a completely secure solution can be built on the Intel architecture, it is necessary to have some sort

of guarantee that these instructions or sequences of instructions do not exist. It has already been discovered that

Intel has undocumented instructions in their architecture. Dr. Dobbs' Journal [Ref. 24] illustrates several

undocumented instructions including UMOV (User Move Data), LOADALL (loads the entire CPU state), ICEBP

(ICE Breakpoint), and SALC (Set AL on Carry).

61

will have to be written, a Type I VMM will be more secure and easier to verify than a Type

II VMM implementation on a low assurance operating system.

62

VI. CONCLUSION

This thesis explored the feasibility of implementing a secure virtual machine

monitor on the Intel Pentium architecture. The thesis began by covering the types of

virtual machine monitors and their hardware requirements as described by Goldberg.

Then, a detailed study of the Intel architecture was done to see if it could meet the

hardware requirements of any type of VMM. A large part of this study involved looking

at approximately 250 instructions in the Intel architecture to determine if they are

virtualizable. The analysis showed that seventeen instructions did not meet Goldberg's

requirements because they were sensitive and unprivileged.

Even though the Intel architecture is not truly virtualizable, a product exists that

provides something similar to a Type II virtual machine for the Intel architecture. This

class of VMM was examined to determine how a VMM can run on an architecture that is

not virtualizable. The analysis showed that this effect may be accomplished by

examining all instructions before they are executed. If a problem instruction is found, the

VMM patches the instruction with code that will force a trap to the VMM. The VMM is

then able to emulate the proper behavior of the instruction.

After defining a strategy that can be used to "virtualize" the Intel architecture, an

analysis was conducted to determine whether a secure virtual machine monitor could be

built for the architecture to separate classified from unclassified information. The VAX

Security Kernel was described to give an example of a secure virtual machine monitor.

We conclude that current VMM products for the Intel architecture should not be used as a

secure virtual machine monitor, even though some vendors claim security as a feature

[Ref. 25]. One of the VMM products claims that virtual machines are isolated in a way

that prevents them from affecting each other or the host operating system. However,

since the product resides on top of an operating system that is not secure, it can not

provide a high enough degree of isolation to protect information in a multilevel

environment.

63

The best way to separate mandatory security classes when supporting virtual

machines would be to build a new, secure Type I VMM on the Intel architecture. The

Intel architecture has features that can be used to implement highly secure systems.

There are many advantages to building a highly secure VMM on the Intel architecture.

First and most important, this solution allows high security while providing a platform

that is compatible with existing popular COTS operating systems and applications.

A. FUTURE WORK

Three additional areas of research could supplement the work contained in this

thesis. First, one might design a secure Type I VMM for the Intel Pentium architecture.

The design should consider the "pitfalls" that were mentioned in Chapter V of this thesis.

Second, future work could include analyzing how the source code from the

FreeMWare project (when it is available) could be changed to implement a secure Type I

VMM. Even though the FreeMWare project is a Type II VMM, a significant amount of

the code could probably be used to begin the effort.

Third, it would be useful to look at the Intel IA64 architecture and determine how

its new features help or hurt virtualization. It is rumored that the architecture will have

five rings, allowing any Intel processor from the 8086 to the Pentium III to be virtualized

in its four outer rings.

64

APPENDIX A. INTEL PENTIUM HI ARCHITECTURE REVIEW

A. ARCHITECTURE

In order to discuss whether the Intel Pentium processor is capable of supporting a

secure VMM, I must give a brief overview of the Pentium architecture. For more

detailed information, see the Intel manuals [Ref. 6,26, 27].

Figure 9 illustrates the Pentium Pro processor architecture. The architecture has

five subsystems: memory, fetch/decode unit, instruction pool, dispatch/execute unit, and

the retire unit.

B. MEMORY MODELS

The address space for physical memory is organized as a long sequence of 8-bit

bytes, each having a unique address. When programs use the processor's memory

management capabilities, they do not directly address physical memory. Instead, they

use one of three memory models illustrated in Figure 10.

In the flat memory model, memory is a single, contiguous address space. The

code, data, and procedure stacks are all contained within this space and are byte-

addressable. In the segmented memory model, memory is a group of independent

address spaces called segments. Code, data, and stacks are contained in separate

segments that are up to 232 bytes in size. A logical address, consisting of a segment and

an offset, is used to address a byte in a segment. The segmented memory model increases

the reliability of programs and systems by separating code, data, and stack segments. For

example, it prevents a stack segment from being able to "grow" into code or data space

and thus overwrite instructions or data. Furthermore, separating OS code, data, and stack

segments from application segments protects OS segments from application segments

and vice versa. The third memory model is the real-address model which was used in the

8086 processor. It is a specific implementation of the segmented memory model where

segments are only 2'6 bytes (64K) each.

65

System Bus (Externa[) L2 Cache

Cache Bus

Bus Interface Unit

Instruction Fetch Unit Instruction Cache (L1)

Instruction Decoder

Simple
Instuction
Decoder

Simple
Instuction
Decoder

Complex
Instuction
Decoder

Next IP
Unit

Branch
Target
Butter

Microcode
Instruction
Sequencer

Register Alias Table

Retirement Unit

j Reorder Buffer (Instruction Pool)

Retirement
Register File
(Intel Arch.
Registers)

Reservation Station

Execution Unit

SIMD FP
Unit

(FPU)

Floating-
Point Unit

(FPU)

Integer
Unit

Integer
Unit

Memory
Interface

Unit

From
Integer

Unit

Data Cache
Unit (L1)

Internal Data-Results Buses

Figure 9. Pentium Pro Processor Microarchitecture From Ref. [26].

66

Flat Model

Linear Address
 w

Linear
Address
Space*

Segmented Model

Segments

Offset

Address Segment Selector

Linear
Address

Space*

Real-Address Mode Model

Offset

Logical _ ^ _ ,
Address Segment Selector

Linear Address
Space Divided

Into Equal
Sized Segments
 >

* The linear address space
can be paged when using the
flat or segmented model.

Figure 10. Three Memory Management Models From Ref. [26].

C. EXECUTION ENVIRONMENT

All programs or tasks running on the Intel architecture have a set of resources to

execute instructions and store code, data, and state. These resources include are in the

table below.

67

Resource Size Quantity Name(s)

General-Purpose Registers 32-bit 8 EAX, EBX, ECX, EDX, ESI, EDI,
EBP, ESP (E = extended)

Segment Registers 16-bit 6 CS, DS, SS, ES, FS, GS
EFLAGS Register 32-bit 1 EFLAGS
EIP (Instruction Pointer Register) 32-bit 1 EIP
Address Space 0-232 bytes 1 N/A

Table 4. Intel Program Resources.

The Intel Pentium's execution environment has three operating modes. First,

protected mode has all of the instructions and architectural features of the processor

available to it. This mode has the most capability of the three and can use any of the

three memory models described in the previous section. To execute 8086 software,

protected mode is used to create a "virtual-8086" mode. This mode is not considered one

of the three operating modes of the processor, but allows 8086 software to run in a

protected, multi-tasking environment.

The second processor mode is the real-address mode. This mode provides the

programming .environment of the 8086 processor with a few added capabilities. In this

mode, the processor only supports the real-address memory model. The major difference

between real-address mode and virtual-8086 mode is that the virtual-8086 mode uses

some protected mode services such as protected mode interrupt handling, exception

handling, and paging.

Finally, the third mode is system management mode. This mode provides an

operating system a transparent mechanism to implement functions such as power

management and system security. In this mode, the processor switches to a separate

address space called the system management RAM and saves the context of the current

program or task. System management mode uses a memory model similar to the real-

address memory model.

System management mode (SMM) is designed to handle system-wide functions

such as power management, system hardware control, or proprietary OEM-designed

68

code. It is intended for use only by system firmware, not by application software or

system software. SMM offers a distinct, isolated processor environment that operates

transparently to an OS and its applications. To start system management mode, a system

management interrupt (SMI) is signaled. The SMI is a nonmaskable, external interrupt

that is unlike the processor's normal interrupt and exception mechanism. After invoking

the system management interrupt, the processor saves its current state and switches to a

separate operating environment in system management RAM. It then executes system

management interrupt handler code before switching back to the previous processor state.

The system management mode does not use privilege levels or address mapping and is

capable of addressing up to 4 gigabytes of memory. It can also execute all I/O and

system instructions.

D. EFLAGS REGISTER

The Intel architecture has a 32-bit EFLAGS register that contains status flags,

system flags, and a control flag. The EFLAGS register is illustrated in Figure 11 below.

The status flags show the results of arithmetic operations. The system flags and I/O

privilege level flag control the operations of the operating system. The operating system

behaves differently based on how these flags are set. System flags and the IOPL should

not be modified by application programs.

E. PROTECTION MECHANISM

The Intel architecture uses a protection mechanism that implements four different

privilege levels: 0, 1, 2, and 3 (0 is the highest privilege level). The mechanism provides

the ability to limit access to segments and pages based on privilege level. Privilege levels

0, 1, and 2 are considered supervisor mode and privilege level three is considered user

mode. The page-level protection mechanism determines access using two different

privilege levels: supervisor and user. Using the protection mechanism, all memory

references are checked before allowing access. These checks include limit, type,

69

31 30 29 28 27 26 25 24 23 22 21 2019 18 17 16151413 12 11 10 9 8 6 5 4 3 2 10

0 0 0 0 0 0 0 0 0 0 I
D

v
1
p

V
s
F

A
c

V R
F 0 N

T

1
0
P
L

O
F

D
F

1
F

T
F

S
F

Z
F 0

A
F 0

P
F 1 C

F

X ID Flag (ID)
X Virtual Interrupt Pending (VIP)-
X Virtual Interrupt Flag (VIF)
X Alignment Check (AC)
X Virtual-8086 Mode (VM)
X Resume Flag (RF)
X Nested Task (NT) ■
X I/O Privilege Level {IOPL) ■
S Overflow Flag (OF)
C Direction Flag (DF)
X Interrupt Enable Flag (IF) -
X Trap Flag (TF)
S Sign Flag (SF)-
S Zero Flag (ZF) ■
S Auxiliary Carry Flag (AF) •
S Parity Flag (PF)
S Carry Flag (CF)

S Indicates a Status Flag
C Indicates a Control Flag
X Indicates a System Flag

□ Reserved bit positions. DO NOT USE.
Always set to values previously read.

privilege level, restriction of addressable domain, restriction of procedure entry-points,

and restriction of instruction set.

Figure 11. The EFLAGS Register From Ref. [26].

In protected mode, the processor has three types of privilege levels. The current

privilege level (CPL) is the privilege level of the current executing task. The descriptor

privilege level (DPL) is the privilege level of a segment or gate. Finally, the requested

privilege level (RPL) is an "override" privilege level that is assigned to segment selectors.

To allow access to code segments with different privilege levels, the processor

uses gate descriptors. Code modules can only access modules in higher privilege

segments by using a protected interface called a gate. Trying to perform a transfer to

such a segment without using a gate causes a general-protection exception. When a call

70

to a procedure that is in a more privileged protection level than the procedure that is

calling it is made, the following steps occur:

First, the segment selector in the CALL instruction references a call gate

descriptor. The call gate descriptor provides access rights information, the segment

selector for the code segment of the called procedure, and the offset into the code

segment (the instruction pointer). Four privilege levels are used to check the validity of a

program control transfer using a call gate. They are the CPL, RPL (of the gate's

selector), DPL (of the call gate descriptor), and the DPL (of the segment descriptor of the

destination code segment. Based on whether control transfer was initiated with a CALL

or JMP instruction, privilege checking rules are as follows:

Instruction Privilege Check Rules

CALL CPL <= call gate DPL; RPL <= call gate DPL

Destination conforming code segment DPL <= CPL

Destination nonconforming code segment DPL <= CPL

JMP CPL <= call gate DPL; RPL <= call gate DPL

Destination conforming code segment DPL <= CPL

Destination nonconforming code segment DPL = CPL

Table 5. Privilege Checking Rules for Call Gates After Ref. [27].

Second, the processor switches to a new stack to execute the called procedure

because each privilege level has its own stack. Therefore, each task must have a stack for

its own privilege level and a stack for each privilege level higher than its own. Privilege

level 3 uses the SS segment selector and the ESP as a stack pointer. The segment

selectors and stack pointers for the other more privileged levels are stored in a system

segment called the task state segment.

71

F. INTERRUPTS AND EXCEPTIONS

Interrupts and exceptions are a way to force a transfer of execution from the

currently running program or task to a special procedure or task called a handler. When

an interrupt or exception is detected, the current task is automatically suspended while the

processor executes the handler. After the handler is executed, the interrupted task

resumes without loss of program continuity. The Intel architecture has 16 predefined

interrupts and exceptions and 224 user-defined, or maskable, interrupts. All interrupts

and exceptions have associated entries in the interrupt descriptor table, or IDT. The IDT

contains a collection of gate descriptors (interrupt, trap, or task). Each interrupt or

exception in the IDT is identified by a number called a vector. When the processor

detects an interrupt or exception it executes an implicit call to a handler procedure or

handler task.

The processor can receive an interrupt from two sources: an external, hardware-

generated interrupt or a software-generated interrupt. External interrupts are delivered

using a special pin on the processor or through an APIC (Advanced Programmable

Interrupt Controller). Software generated interrupts are created by using the INT

instruction and by supplying the interrupt vector number as an operand. Any of the 256

interrupt vectors can be used as a parameter to the INT instruction.

Exceptions are divided into three classes: faults, traps, and aborts. They are

divided based on the way they are reported and whether the instruction that caused the

exception can be restarted with no loss of program continuity. A fault can be corrected

and allows a program to resume with no loss of continuity. When a fault is reported, the

processor "restores the machine state to the state prior to execution of the faulting

instruction. A trap is reported immediately after a trapping instruction, allowing the

execution of a program to be resumed without loss of program continuity. An abort does

not always report the precise location of the instruction that caused the exception and

does not allow restarting of the task that caused the exception.

72

The processor can receive an exception from three sources: processor detected

program error exceptions, software-generated exceptions, or machine check exceptions.

Program error exceptions are generated by the processor if it detects an error while

executing an application program. Three instructions- INTO, INT 3, and BOUND--

allow exceptions to be generated by software. Finally, machine-check exceptions are

generated by a mechanism in the processor that checks for processor errors.

To access an interrupt or exception handler, internal hardware or software must

send an interrupt vector to the processor. The vector indexes into the IDT (Interrupt

Descriptor Table) to a gate descriptor for the procedure or task used to service the

interrupt or exception. The IDT can contain three kinds of descriptors: task-gate,

interrupt-gate, and trap-gate descriptors. If the descriptor is a task gate, the handler is

accessed using a task switch. If .the descriptor is an interrupt or trap gate, the handler is

accessed using a method similar to a call gate. The IDT can reside anywhere in the linear

address space and is located using the IDT register.

When the processor performs a call to an interrupt or exception handler, it saves

the current state of the EFLAGS register, CS register, and EIP register on the stack.

Upon returning to the calling task, the IRET instruction is used to restore the saved flags

into the EFLAGS register. However, the IOPL field is restored only if the CPL is 0.

Additionally, the IF flag is changed only if the CPL is less than or equal to the IOPL.

G. INPUT/OUTPUT

Intel processors can send data to and get data from input/output ports (I/O ports).

System hardware creates I/O ports that are configured to communicate with peripheral

devices. There are three types of I/O ports: input, output, and bi-directional.

I/O ports can be accessed two ways: with a separate I/O address space or with

memory-mapped I/O (in physical memory). Accessing I/O through the former method is

done using a set of I/O instructions and an I/O protection mechanism, all of which are

provided by the processor. Accessing I/O with the latter method is done by using the

73

processors general-purpose move and string instructions. In this case, protection is

provided through segmentation and/or paging. I/O ports can be mapped to appear in the

I/O address space, the physical memory address space, or both.

The processor's I/O address space is separate from the physical memory address

space. The I/O address space consists of 64K individually addressable 8-bit I/O ports.

These ports are numbered from 0 to FFFFH. There are two protection devices that

regulate access to I/O ports. The first is the I/O privilege level (IOPL field of the

EFLAGS register) and the second is the I/O permission bit map of a task state segment.

When I/O devices use memory-mapped I/O, any of the processor's instructions

that reference memory can be used to access an I/O port at a certain physical address.

This means that normal segmentation and paging mechanisms apply.

H. ADDITIONAL SYSTEM REGISTERS

The Intel Pentium system architecture supports many system operations such as

memory management, protection of software modules, task management, control of

multiple processors, interrupt and exception handling, cache management, hardware and

resource power management, and debugging and performance monitoring.

The system architecture uses many registers which have not yet been discussed.

These include control registers (CRO, CR1, CR2, CR3) for system level operations,

debug registers for debugging programs, the GDTR, LDTR, IDTR registers, and the task

register. The control registers are illustrated in Figure 12 below. The GDTR, LDTR,

IDTR, and task register all contain the linear address and size of their respective table or

task. The system level registers and data structures are illustrated in Figure 13 below.

I. TASK MANAGEMENT

In protected mode, all processor execution is performed with tasks. A task is a

"unit of work that a processor can dispatch, execute, and suspend. It can be used to

execute a program, a process, an operating-system service utility, an interrupt or

74

exception handler, or a kernel or executive utility" [Ref. 27]. The Intel architecture has

mechanisms that allow tasks to be saved, executed, and switched.

A task consists of two parts. The first is a task execution space that has a code

segment, stack segment, and one or more data segments. If protection mechanisms are

used, the task execution space also contains a stack for each privilege level higher than its

31 24 23 22 21 20 19 16 15 14 13 12 11 8 ? 0

D A Seg. D
Base 31:24 G

B
0 V

L
Limit
19:16

P P
L

S Type Base 23:16

1615

Base Address 15:00 Segment Limit 15:00

AVL — Available for use by system software
BASE — Segment base address
D/B — Default operation size {0 = 16-bit segment; 1 = 32-bit segment)
DPL — Descriptor privilege level
G — Granularity
LIMIT — Segment Limit
P — Segment present
S — Descriptor type (0 = system; 1 = code or data)
TYPE — Segment type

Figure 12. Control Registers From Ref. [27].

own. The second part is the task state segment, or TSS. A TSS defines a task's execution

environment state. The state of the executing task is defined by the following [Ref. 27].

• The task's current execution space, defined by the segment selectors in
the segment registers (CS, DS, SS, ES, FS, and GS).

• The state of the general-purpose registers.

• The state of the EFLAGS register.

• The state of the EIP register.

75

• The state of control register CR3.

• The state of the task register.

• The state of the LDTR register.

• The I/O map base address and I/O map (contained in the TSS).

• Stack pointers to privilege 0,1, and 2 stacks (contained in the TSS).

• Link to previously executed task (contained in the TSS).

All of these items other than the state of the task state register are contained in the

task's TSS before it is dispatched.

The TSS identifies the segments that make up the task execution space and has a

storage space for task state information. A task is identified using a segment selector to

its TSS. The task register holds the TSS for the current task. If paging is implemented,

the base address of the task's page directory is loaded in control register 3,

There are five ways to execute a task [Ref. 27]:

• An explicit call to a task with the CALL instruction.

• An explicit jump to a task with the JMP instruction.

• An implicit call (by the processor) to an interrupt-handler task.

• An implicit call to an exception-handler task.

• A return (initiated with an IRET instruction) when the NT flag in the
EFLAGS register is set.

There are four ways to execute a task switch [Ref. 27]:

• The current program, task, or procedure executes a JMP or CALL
instruction to a TSS descriptor in the GDT.

• The current program, task, or procedure executes a JMP or CALL
instruction to a task-gate descriptor in the GDT or the current LDT.

76

• An interrupt or exception vector points to a task-gate descriptor in the
IDT.

• The current task executes an IRET when the NT flag in the EFLAGS
register is set.

77

EFLAGS Register

Control Registers

Physical Address

Linear Address

CR4
CR3
CR2
CR1
CRO
MXCSR1

Segment Selector

Register

Task Register

Global Descriptor
Table (GDT)

Segment Sei. r^» Seg. Desc.

Interrupt
Vector

TSS Seg. Sei.

Interrupt Descriptor
Table (IDT)

Interrupt Gate

Task Gate

Trap Gate 1

I I

ir

TSS Desc.

Seg. Desc.

TSS Desc.

LTD Desc.

Coder Data or
Stack Segment

Task-State
Segment (TSS)
 1- ** Task

1 Code
Data

Stack

Current— »-
TSS

Interrupt Handler
*' Code

L

1*
Task-State
Segment (TSS)

Stack

GDTR

Local Descriptor
Table (LPT)

IDTR Call-Gate H
Segment Selector

1 \-*(
Seg. Desc.

Call Gate

LDTR

Task
LCode

*

)ata
Stack

Exception Handler
—*T

Current -
TSS

Code

L Stack

Protected Procedure
I Code

Current— >*•
TSS L Stack

Linear Address Space Linear Address

This page mapping example is for 4-KByte pages
and the normal 32-bit physical address size.

"Physicaf Address

1. MXCSR is new control/status register in the Pentium® 111 processor.

Figure 13. System Registers and Data Structures From Ref. [27].

78

J. PROCESSOR MANAGEMENT AND INITIALIZATION

After a machine is powered up or reset, every processor on the bus performs a

hardware reset. Every processor sets its registers and floating point unit to a known state

and enters real address mode. This state varies based on the processor family. If there is

more than one processor on the system bus, a protocol runs to assign a primary processor.

After all processors are initialized, configured, and synchronized, the primary processor

begins executing an operating system or executive task. The first instruction that is

executed is located at physical address FFFFFFFOH.

Since the processor starts in real address mode, the only data structure that has to

be loaded into memory is the interrupt vector table. However, before the processor can

switch to protected mode, the following data structures and code modules must be loaded

into memory by the software initialization code [Ref. 27]:

• A protected-mode IDT.

• A GDT.

• A TSS.

• (Optional.) An LDT.

• If paging is to be used, at least one page directory and one page table.

• A code segment that contains the code to be executed when the
processor switches to protected mode.

• One or more code modules that contain the necessary interrupt and
exception handlers.

Furthermore, the software initialization code must also initialize the following

registers: GDTR, IDTR, control registers CR1 through CR4, and memory type range

registers (MTRRs). MTRRs are only applicable to the Pentium Pro processor and

beyond. The MTRRs allow memory to be associated with physical-address ranges in

79

system memory. This allows the processor to optimize operations for different types of

memory such as RAM, ROM, and memory-mapped I/O devices.

To enter protected mode, the PE bit of CRO is set. Once in protected mode,

software usually does not switch back to real mode. This is because it can run the code in

virtual 8086 mode. However, clearing the PE bit in the EFLAGS register will bring the

processor back into real address mode.

In protected mode, all memory accesses pass through the global descriptor table

(GDT) or the local descriptor table (LDT). Both of these tables contain segment

descriptors that contain the base address of a segment in linear address space, access

rights, type, and usage information. Every segment descriptor has a segment selector that

contains a global/local flag, access rights information, and an index into the GDT or

LDT. To access a byte of memory, a segment selector and offset are supplied.

K. GATES

The system architecture contains a set of special descriptors called gates. There

are four types of gates: call, interrupt, trap, and task. They provide protected gateways to

system procedures/handlers that operate at a more privileged level than normal

applications.

A call gate works as follows. First, a calling procedure provides the selector of a

call gate. Then the processor performs a check on the access rights of the call gate. This

is done by comparing the CPL (current privilege level) with the PL of the call gate and

the destination code segment that the call gate points to. If access to the destination

segment is allowed, the procedure gets a segment selector and an offset into the

destination code segment from the call gate. If a change in privilege level is required, the

processor also switches to the stack for that privilege level.

80

L. MEMORY MANAGEMENT

The system architecture supports two types of memory management facilities:

segmentation and virtual memory using paging. These facilities use three types of

memory addresses: logical addresses, linear addresses, and physical addresses.

The Intel architecture provides a physical address space of 4GB. The physical

address space is the range of addresses the processor can address on its address bus.

When paging is used, a linear address is mapped to the physical address space. All

segments are contained in the linear address space. Paging is a mechanism to use a

virtual memory system where sections of a program's execution environment are mapped

into physical memory as they are needed.

When segmentation is used, logical addresses are mapped into the linear addresses

space. Segmentation provides a mechanism to divide the linear address space into small,

protected address spaces (segments). Segments are used to hold the code, data, and stack

segments for programs and to hoid system data structures such as a task state segment or

a local descriptor table. The processor enforces the boundaries between these segments

and does not allow one program to write into another program's segments. All segments

are contained in the processor's linear address space. A logical address is mapped to a

linear address using a segment selector and an offset. The base address of the segment

selector and the offset together form a linear address.

If the processor is in protected mode (the normal operating mode of the

processor), it is not possible to disable segmentation. The use of paging however is

optional. If paging is not used, linear addresses are mapped directly into the physical

address space of the processor. When using paging, each segment is divided into pages

that are typically 4 kilobytes in size. Every linear address is broken into three parts.

These parts provide offsets into the page directory, page table, and the page frame. A

page directory entry contains the physical address of the base of a page table, access

rights, and memory management information. A page table entry contains the physical

address of a page frame, access rights, and memory management information. When a

81

program attempts to use a linear address, the processor uses the page directory and page

tables to translate the linear address into a physical address and performs the requested

operation on the memory location. If the page is not in physical memory, the processor

interrupts execution of the program with a page fault exception and reads the page into

physical memory from the disk and continues executing the program (see Figure 14

below). The processor stores the most recently used page-directory and page-table entries

in a cache on the processor called translation lookaside buffers (TLBs).

Logical Address
(or Far Pointer)

f 1 Segment
Selector Offset Linear Address

Space

Global Descriptor
Table (GDT)

Segment
Descriptor

Segment __^/^
Base Address

Linear Address
Dir Table Offset Physical

Address
Space

Page Table

Entry .£
Page

Phy. Addr.

Paging- Segmentation

Figure 14. Segmentation and Paging From Ref. [27].

82

APPENDIX B. INTEL INSTRUCTIONS

This appendix contains a list of Intel instructions, their class, and whether or not they are sensitive,
privileged, or problem instructions. The following is a key for abbreviations that are used in the instruction
list.

NAME
DESCRIPTION
SENS
PRIV
PROB
CLASS

The name of the instruction
A short description of the instruction
Is the instruction sensitive?
Is the instruction privileged?
Is the instruction a problem for virtualization?
The Intel-defined class that the instruction falls under (defined below)

II = Integer Data Transfer
12 = Integer Binary Arithmetic
13 = Integer Decimal Arithmetic
14 = Integer Logic Instructions
15 = Integer Shift and Rotate
16 = Integer Bit and Byte
17 = Integer Control Transfer

Fl = Floating Point Data Transfer
F2 = Floating Point Basic Arithmetic
F3 = Floating Point Comparison
F4 = Floating Point Transcendental
F5 = Floating Point Load Constraints
F6 = Floating Point Unit Control
ST1 = Streaming SIMD Extensions Data Transfer

18 = Integer String
19 = Integer Flag Control
IIP = Integer Segment Register
111= Integer Miscellaneous
Ml = MMX Data Transfer
M2 = MMX Conversion
M3 = MMX Packed Arithmetic
M4 = MMX Comparison
M5 = MMX Logic

ST2 = Streaming SIMD Extensions Conversion
ST3 = Streaming SIMD Extensions Packed Arithmetic
ST4 = Streaming SIMD Extensions Comparison
ST5 = Streaming SIMD Extensions Logical
ST6 = Streaming SIMD Extensions Data Shuffle
ST7 = Streaming SIMD Extensions Additional SIMD-Integer
ST8 = Streaming SIMD Extensions Cacheability Control
ST9 = Streaming SIMD Extensions State Management
S = System

M6 = MMX Shift and Rotate
M7 = MMX State Management

REASON The reason the instruction is a problem for virtualization

3A1 = Mode of the VM

3A2 = State of the machine

3B1 = Sensitive Registers

References or changes the mode of the processor: real-address, protected,
system management mode, etc.
References or changes the state of the processor: halt, respond to
interrupts, respond to debug exceptions, etc.
References or changes sensitive registers: CRO, LDTR, EFLAGS, etc.

3B2 = Sensitive Memory
Locations
3C1 = Protection system
3C2 = Memory System

3C3 = Address Relocation
System
3D = I/O Instructions

References or changes sensitive memory locations

Reference or change a privilege level in the system: CPL, IOPL, etc.
Reference the memory system: alignment checking, invalidating cache
and TLB entries, etc.
Interferes with how physical, linear, and logical addresses are translated

Move data between the processor's I/O ports and a register/memory

83

NAME DESCRIPTION SENS PRIV CLASS REAS PROB
AAA ASCII Adjust After Addition N N 13 - N
AAD ASCII Adjust AX Before Division N N 13 - N
AAM ASCII Adjust AX After Multiply N N 13 - N
AAS ASCII Adjust AL After Subtraction N N 13 - N
ADC Add with Carry N N 12 - N
ADD Add N N 12 - N
ADDPS Packed Single-FP Add N N ST3 - N
ADDSS Scalar Single-FP Add N N ST3 - N
AND Logical AND N N 14 - N
ANDNPS Bit-wise Logical And Not For Single-FP N N ST5 - N
ANDPS Bit-wise Logical And For Single FP N N ST5 - N
ARPL Adjust RPL Field of Segment Selector N N S - N
BOUND Check Array Index Against Bounds N N 17 - N
BSF Bit Scan Forward N N 16 - N
BSR Bit Scan Reverse N N 16 - N
BSWAP Byte Swap N N 11 - N
BT Bit Test N N 16 - N
BTC Bit Test and Complement N N 16 - N
BTR Bit Test and Reset N N 16 - N
BTS Bit Test and Set N N 16 - N
CALL Call Procedure Y N 17 3C1 Y
CBW/CWDE Convert Byte to Word/Convert Word to

Doubleword
N N 11 - N

CLC Clear Carry Flag N N 19 - N
CLD Clear Direction Flag N N 19 - N
CLI Clear Interrupt Flag Y Y 19 3C1 N
CLTS Clear Task-Switched Flag in CRO Y Y S 3B1 N
CMC Complement Carry Flag N N 19 - N
CMOVcc Conditional Move N N 11 - N
CMP Compare Two Operands N N 12 - N
CMPPS Packed Single-FP Compare N N ST4 N
CMPS/CMPSB
/CMPSW/CMP
SD

Compare String Operands N N 18 N

CMPSS Scalar Single-FP Compare N N ST4 - N
CMPXCHG Compare and Exchange N N 11 - N
CMPXCHG8B Compare and Exchange 8 Bytes N N 11 - N
COMISS Scalar Ordered Single-FP Compare and

SetEFLAGS
N N • ST4 - N

CPUID CPU Identification N N 111 - N
CVTPI2PS Packed Signed INT32 to Packed Single-

FP Conversion
N N ST2 - N

CVTPS2PI Packed Single-FP to Packed INT32
Conversion

N N ST2 - N

84

CVTSI2SS Scalar Signed INT32 to Single-FP
Conversion

N N ST2 - N

CVTSS2SI Scalar Single-FP to Signed INT32
Conversion

N N ST2 - N

CVTTPS2PI Packed Single-FP to Packed INT32
Conversion (Truncate)

N N ST2 - N

CVTTSS2SI Scalar Single-FP to Signed INT32
Conversion (Truncate)

N N ST2 - N

CWD/CDQ Convert Word to Doubleword/Convert
Doubleword to Quadword

N N 11 - N

DAA Decimal Adjust AL after Addition N N 13 - N
DAS Decimal Adjust ÄL after Subtraction N N 13 - N
DEC Decrement by 1 N N 12 - N
DIV Unsigned Divide N N 12 - N
DIVPS Packed Single-FP Divide N N ST3 - N
DIVSS Scalar Single-FP Divide N N ST3 - N
EMMS Empty MMX™ State N N M6 - N
ENTER Make Stack Frame for Procedure

Parameters
N N 17 - N

F2XM1 Compute 2x-l N N F4 - N
FABS Absolute Value N N F2 - N
FADD/FADDP
/FIADD

Add N N F2 - N

FBLD Load Binary Coded Decimal N N Fl - N
FBSTP Store BCD Integer and Pop N N Fl - N
FCHS Change Sign N N F2 - N
FCLEX/FNCL
EX

Clear Exceptions N N F6 - N

FCMOVcc Floating-Point Conditional Move N N Fl - N
FCOM/FCOM
P/FCOMPP

Compare Real N N F3 - N

FCOMI/FCOM
IP/
FUCOMI/FUC
OMIP

Compare Real and Set EFLAGS N N F3 N

FCOS Cosine N N F4 - N
FDECSTP Decrement Stack-Top Pointer N N F6 - N
FDIV/FDIVP/F
IDIV

Divide N N F2 - N

FDIVR/FDIVR
P/FIDIVR

Reverse Divide N N F2 . - N

FFREE Free Floating-Point Register N N F6 - N
FICOM/FICO
MP

Compare Integer N N F3 - N

FILD Load Integer N N Fl - N
FINCSTP Increment Stack-Top Pointer N N F6 - N
FINIT/FNINIT Initialize Floating-Point Unit N N F6 - N
FIST/FISTP Store Integer N N Fl - N
FLD Load Real N N Fl - N

85

FLD1/FLDL2T
/FLDL2E/FLD
PI/FLDLG2/FL
DLN2/FLDZ

Load Constant N N F5 N

FLDCW Load Control Word N N F6 - N
FLDENV Load FPU Environment N N F6 - N
FMUL/FMUL
P/FIMUL

Multiply N N F2 - N

FNOP No Operation N N F6 - N
FPATAN Partial Arctangent N N F4 - N
FPREM Partial Remainder N N F2 - N
FPREM1 Partial Remainder N N F2 - N
FPTAN Partial Tangent N N F4 - N
FRNDINT Round to Integer N N F2 - N
FRSTOR Restore FPU State N N F6 - ■ N
FSAVE/FNSA
VE

Store FPU State N N F6 ■ N

FSCALE Scale N N F2 N
FSIN Sine N N F4 - N
FSINCOS Sine and Cosine N N F4 - N
FSQRT Square Root N N F2 - N
FST/FSTP Store Real N N Fl - N
FSTCW/FNST
cw

Store Control Word N N F6 - N

FSTENV/FNS
TENV

Store FPU Environment N N F6 ~ N

FSTSW/FNST
SW

Store Status Word N N F6 - N

FSUB/FSUBP/
FISUB

Subtract N N F2 - N

FSUBR/FSUB
RP/FISUBR

Reverse Subtract N N F2 " N

FTST TEST N N F3 - N
FUCOM/FUC
OMP/FUCOM
PP

Unordered Compare Real N N F3 N

FXAM Examine N N F3 - N
FXCH Exchange Register Contents N N Fl - N
FXRSTOR Restore FP and MMX™ State and

Streaming SIMD Extension State
N N ST9 - N

FXSAVE Store FP and MMX™ State and
Streaming SIMD Extension State

N N ST9 - N

FXTRACT Extract Exponent and Significand N N F2 - N
FYL2X Compute y * log2x N N F4 - N
FYL2XP1 Compute y * log2(x +1) N N F4 - N
HLT Halt Y Y S 3A2 N
IDIV Signed Divide N N 12 - N
IMUL Signed Multiply N N 12 - N
IN Input from Port Y Y 11 3D N

86

INC Increment by 1 N N 12 - N
INS/INSB/INS
W/INSD

Input from Port to String Y Y 18 3D N

INT
n/INTO/INT 3

Call to Interrupt Procedure Y N 17 3C1 Y

INVD Invalidate Internal Caches Y Y S 3C2 N
INVLPG Invalidate TLB Entry Y Y S 3C2 N
IRET/IRETD Interrupt Return Y N 17 3C1 Y
Jcc Jump if Condition Is Met N N 17 - N
JMP Jump Y N 17 3C1 Y
LAHF Load Status Flags into AH Register N N 19 - N
LAR Load Access Rights Byte Y N S 3C1 Y
LDMXCSR Load Streaming SIMD Extension

Control/Status
N N ST9 - N

LDS/LES/LFS/
LGS/LSS

Load Far Pointer Y Y 110 3C1 N

LEA Load Effective Address N N 111 - N
LEAVE High Level Procedure Exit N N 17 - N
LGDT/LIDT Load Global/Interrupt Descriptor Table

Register
Y Y S 3B1 N

LLDT Load Local Descriptor Table Register Y Y S 3B1 N
LMSW Load Machine Status Word Y Y S 3A2 N
LOCK Assert LOCK# Signal Prefix N N S - N
LODS/LODSB
/LODSW/LOD
SD

Load String N N 1-8 N

LOOP/LOOPc
c

Loop According to ECX Counter N N 17 - N

LSL Load Segment Limit Y N S 3C1 Y
LTR Load Task Register Y Y S 3B1 N
MASKMOVQ Byte Mask Write N N ST8 - N
MAXPS Packed Single-FP Maximum N N ST3 - N
MAXSS Scalar Single-FP Maximum N N ST3 - N
MINPS Packed Single-FP Minimum N N ST3 - N
MINSS Scalar Single-FP Minimum N N ST3 - N
MOV Move Y N 11 3C1 Y
MOV Move to/from Control Registers Y Y S 3B1 N
MOV Move to/from Debug Registers Y Y s 3B1 N
MOVAPS Move Aligned Four Packed Single-FP N N ST1 - N
MOVD Move 32 Bits N N Ml - N
MOVHLPS High to Low Packed Single-FP N N ST1 - N
MOVHPS Move High Packed Single-FP N N ST1 - N
MOVLHPS Move Low to High Packed Single-FP N N ST1 - N
MOVLPS Move Low Packed Single-FP N N ST1 - N
MOVMSKPS Move Mask To Integer N N ST1 - N
MOVNTPS Move Aligned Four Packed Single-FP

Non Temporal
N N ST8 - N

MOVNTQ Move 64 Bits Non Temporal N N ST8 - N
MOVQ Move 64 Bits N N Ml - N

•

87

*

MOVS/MOVS
B/MOVSW/M
OVSD

Move Data from String to String N N 18 N

MOVSS Move Scalar Single-FP N N ST1 - N
MOVSX Move with Sign-Extension N N 11 - N
MOVUPS Move Unaligned Four Packed Single-FP N N Fl - N
MOVZX Move with Zero-Extend N N 11 - N
MUL Unsigned Multiply N N 12 - N
MULPS Packed Single-FP Multiply N N ST3 - N
MULSS Scalar Single-FP Multiply N N ST3 - N
NEG Two's Complement Negation N N 12 - N
NOP No Operation N N 111 - N
NOT One's Complement Negation N N 14 - N
OR Logical Inclusive OR N N 14 - N
ORPS Bit-wise Logical OR for Single-FP Data N N ST5 - N
OUT Output to Port Y Y 11 j 3D N
OUTS/OUTSB
/OUTSW/OUT
SD

Output String to Port Y Y 18 3D N

PACKSSWB/P
ACKSSDW

Pack with Signed Saturation N N M2 ~ N

PACKUSWB Pack with Unsigned Saturation N N M2 - ■ N
PADDB/PAD
DW/PADDD

Packed Add N N M3 ~ N

PADDSB/PAD
DSW

Packed Add with Saturation N N M3 - N

PADDUSB/PA
DDUSW

Packed Add Unsigned with Saturation N N M3 " N

PAND Logical AND. N N M4 - N
PANDN Logical AND NOT N N M4 - N
PAVGB/PAV
GW

Packed Average N N ST7 ~ N

PCMPEQB/PC
MPEQW/PCM
PEQD

Packed Compare for Equal N N M3 N

PCMPGTB/PC
MPGTW/PCM
PGTD

Packed Compare for Greater Than N N M3 N

PEXTRW Extract Word N N ST7 - N
PINSRW Insert Word N N ST7 - N
PMADDWD Packed Multiply and Add N N M2 - N
PMAXSW Packed Signed Integer Word Maximum N N ST7 - N
PMAXUB Packed Unsigned Integer Byte Maximum N N ST7 - N
PMINSW Packed Signed Integer Word Minimum N N ST7 - N
PMINUB Packed Unsigned Integer Byte Minimum N N ST7 - N
PMOVMSKB Move Byte Mask To Integer N N ST7 - N
PMULHUW Packed Multiply High Unsigned N N ST7 - N
PMULHW Packed Multiply High N N M2 - N
PMULLW Packed Multiply Low N N M2 - N

88

POP Pop a Value from the Stack Y N 11 3C1 Y
POPA/POPAD Pop All General-Purpose Registers N N 11 - N
POPF/POPFD Pop Stack into EFLAGS Register Y N 19 3B1 Y
POR Bitwise Logical OR N N M4 - N
PREFETCH Prefetch N N ST8 - N
PSADBW Packed Sum of Absolute Differences N N ST7 - N
PSHUFW Packed Shuffle Word N N ST7 - N
PSLLW/PSLL
D/PSLLQ

Packed Shift Left Logical N N M5 - N

PSRAW/PSRA
D

Packed Shift Right Arithmetic N N M5 - N

PSRLW/PSRL
D/PSRLQ

Packed Shift Right Logical N N M5 - N

PSUBB/PSUB
W/PSUBD

Packed Subtract N N M3 - N

PSUBSB/PSU
BSW

Packed Subtract with Saturation N N M3 - N

PSUBUSB/PS
UBUSW

Packed Subtract Unsigned with
Saturation

N N M3 - N

PUNPCKHBW
/PUNPCKHW
D/PUNPCKH
DQ

Unpack High Packed Data N N M2 N

PUNPCKLBW
/PUNPCKLW
D/PUNPCKLD
Q

Unpack Low Packed Data N N M2 N

PUSH Push Word or Doubleword Onto the
Stack

Y N 11 3C1 Y

PUSHA/PUSH
AD

Push All General-Purpose Registers N N 11 - N

PUSHF/PUSH
FD

Push EFLAGS Register onto the Stack Y N 19 3B1 Y

PXOR Logical Exclusive OR N N M4 - N
RCL/RCR/RO
L/ROR

Rotate N N 15 - N

RCPPS Packed Single-FP Reciprocal N N ST3 - N
RCPSS Scalar Single-FP Reciprocal N N ST3 - N
RDMSR Read from Model Specific Register Y Y S 3B1 N
RDPMC Read Performance-Monitoring Counters Y Y S 3B1 N
RDTSC Read Time-Stamp Counter Y Y S 3B1 N
REP/REPE/RE
PZ/REPNE
/REPNZ

Repeat String Operation Prefix N N 18 N

RET Return from Procedure Y N 17 3C1 Y
RSM Resume from System Management Mode Y N S 3A1 Y
RSQRTPS Packed Single-FP Square Root

Reciprocal
N N ST3 - N

RSQRTSS Scalar Single-FP Square Root Reciprocal N N ST3 - N

89

SAHF Store AH into Flags N N 19 - N
SAL/SAR/SHL
/SHR

Shift N N 15 - N

SBB Integer Subtraction with Borrow N N 12 - N
SCAS/SCASB/
SCASW/SCAS
D

Scan String N N 18 N

SETcc Set Byte on Condition N N 16 - N
SFENCE Store Fence N N ST8 - N
SGDT/SIDT Store Global/Interrupt Descriptor Table

Register
Y N S 3B1 Y

SHLD Double Precision Shift Left N N 15 - N
SHRD Double Precision Shift Right N N 15 - N
SHUFPS Shuffle Single-FP N N ST6 - N
SLDT Store Local Descriptor Table Register Y N S 3B1 Y
SMSW Store Machine Status Word Y N S 3B1 Y
SQRTPS Packed Single-FP Square Root N N ST3 - N
SQRTSS Scalar Single-FP Square Root N N ST3 - N
STC Set Carry Flag N N 19 - N
STD Set Direction Flag N N 19 - N
STI Set Interrupt Flag Y Y 19 3A2 N
STMXCSR Store Streaming SIMD Extension

Control/Status
N N ST9 - N

STOS/STOSB/
STOSW/STOS
D

Store String N N 18 • N

STR Store Task Register Y N S 3C1 Y
SUB Subtract N N 12 - N
SUBPS Packed Single-FP Subtract N N ST3 - N
SUBSS Scalar Single-FP Subtract N N ST3 - N
SYSENTER Fast Transition to System Call Entry

Point
Y N S 3C1 Y

SYSEXIT Fast Transition from System Call Entry
Point

Y Y S 3C1 N

TEST Logical Compare N N 16 - N
UCOMISS Unordered Scalar Single-FP compare and

set EFLAGS
N N 111, ST4 N N

UD2 Undefined Instruction N N - - N
UNPCKHPS Unpack High Packed Single-FP Data N N ST6 - N
UNPCKLPS Unpack Low Packed Single-FP Data N N ST6 - N
VERR/VERW Verify a Segment for Reading or Writing • Y N S 3C1 Y
WAIT/FWAIT Wait N N F6 - N
WBINVD Write Back and Invalidate Cache Y Y S 3C2 N
WRMSR Write to Model Specific Register Y Y S 3B1 N
XADD Exchange and Add N N 11 - N
XCHG Exchange Register/Memory with Register N N 11 - N
XLAT/XLATB Table Look-up Translation N N 111 - N
XOR Logical Exclusive OR N N 14 - N
XORPS Bit-wise Logical Xor for Single-FP Data N ■N ST5 - N

90

LIST OF REFERENCES

1. Goldberg, Robert, Architectural Principles for Virtual Computer Systems, Ph.D.
Dissertation, Harvard University, Cambridge, Massachusetts, October 1972.

2. Bugnion, Edouard, Devine, Scott, Govil, Kinshuk, and Rosenblum, Mendel, "Disco:
Running Commodity Operating Systems on Scalable Multiprocessors," ACM
Transactions on Computer Systems, v. 15.4, pp. 412-447, November 1997.

3. Popek, Gerald J. "Formal Requirements for Virtualizable Third Generation
Architectures," Communications of the ACM, v 17.7, pp. 412-421, July 1974.

4. National Security Agency Report CSC-EPL-92/003, Final Evaluation Report: HFS
Incorporated, XTS-200,27 May 1992.

5. National Security Agency Report NCSC-FER-94/34, Final Evaluation Report: Gemini
Computer, Inc Gemini Trusted Network Processor Version 1.01,28 June 1995.

6. Intel Corporation, Intel Architecture Software Developer's Manual, Volume 2:
Instruction Set Reference, 1999.

7. VMware, Inc, "Welcome to VMware, Inc. - Virtual Platform Technology."
[http://www.vmware.com]. March 1999.

8. Karger, Paul A., Zurko, Mary Ellen, Bonin, Douglas W., Mason Andrew H., Kahn,
Clifford E., "A VMM Security Kernel for the VAX Architecture," IEEE, pp. 2-19,
1990.

9. Department of Defense, "Department of Defense Trusted Computer System Evaluation
Criteria, " DOD 5200.28-STD, December 1985.

10. Hall, Judith., and Robinson, Paul T., "Virtualizing the VAX Architecture," Proceedings
of the 18tn International Symposium on Computer Architecture, pp.380-389, Toronto,
Canada, May 1991.

11. Nutt, Gary, Operating systems: A Modern Perspective, pp. 255-291, Addison-Wesley,
1997.

12. Digital Equipment Corporation, Order No. AA-LA39A-TE, VMS
Analyze/DiskjStructure Utility Manual, April 1988.

13. National Security Agency Report CSC-EPL-91/005, Final Evaluation Report: Boeing
Space and Defense Group, MLS LAN Secure Network Server System, 28 August 1991.

91

14. National Security Agency Report CSC-EPL-90/001.A, Final Evaluation Report: Verdix
Corporation VSLAN 5.1/VSLANE 5.1, 11 January, 1994.

15. National Security Agency Report CSC-EPL-92/001.A, Final Evaluation Report:
Trusted Information Systems, Inc. TrustedXENIXVersion 4.0, January 1994.

16. Schroeder, Michael D. and Saltzer, Jerome H., "A Hardware Architecture for
Implementing Protection Rings," Communications of the ACM, v. 15.3, pp.157-169,
March 1972.

17. Anderson, James P., Computer Security Technology Planning Study, Vol. 1, Hanscom
AFB ESD-TR-73-51,1972.

18. Sibert, Olin, Porras, Phillip A., Lindell, Robert, "The Intel 80x86 Processor
Architecture: Pitfalls for Secure Systems," Institute of Electrical and Electronics
Engineers, 1995.

19. Lampson, Butler W., "A Note on the Confinement Problem," Communications of the
ACM, v. 16.10, pp.613-615, October 1973.

20. Lawton, Kevin, "Running Multiple Operating Systems Concurrently on an IA32 PC
Using Virtualization Techniques."
Phttp://www.freemware.org/docs.phtml?file=paper.txt]. June 1999.

21. Lawton, Kevin, "Welcome to the 'Bochs Software Company' Home Page."
[http://www.bochs.com]. July 1999.

22. Wine, "Wine Development HQ." [http://www.winehq.com]. July 1999.

23. Common Criteria for Information Technology Security Evaluation, Version 2.0, CCIB-
98-026, May 1998

24. Dr. Dobbs' Journal, "Intel Secrets, Bugs, and Undocumented Op Codes."
[http://www.x86.org/secrets/]. July 1999.

25. Rosenblum, Mendel, VMware, Inc., Lecture at Stanford University, Palo Alto,
California, August 17, 1999.

26. Intel Corporation, Intel Architecture Software Developer's Manual, Volume 1: Basic
Architecture, 1999.

92

27. Intel Corporation, Intel Architecture Software Developer 's Manual, Volume 3: System
Programming Guide, 1999.

93

94

BIBLIOGRAPHY

1. Andover.Net, "SlashDot: News for Nerds, Stuff That Matters."
[http://www.slashdot.org]. May 1999.

2. Lecture by Steven B. Lipner, Mitretek Systems, at the Naval Postgraduate School,
Monterey, CA, 25 February 1999.

3. Trusted Information Systems, A Proposed Interpretation of the TCSEC for Virtual
Machine Monitors, Vol 1: Strict Separation, 1 May 1990.

95

96

INITIAL DISTRIBUTION LIST

No. Copies

Defense Technical Information Center 2
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir, VA 22060-6218

Dudley Knox Library
Naval Postgraduate School
411 DyerRd.
Monterey, CA 93943-5101

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5000

Dr. Cynthia E. Irvine
Computer Science Department, Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943

Steven B. Lipner
Mitretek Systems
7525 Colshire Drive
McLean, VA 22102-7400

6. Paul Pittelli
National Security Agency
Research and Development Building
R2
9800 Savage Road
Fort Meade, MD 20755-6000

7. CAPT Dan Galik
Space and Naval Warfare Systems Command
PMW 161
Building OT-1, Room 1024
4301 Pacific Highway
San Diego, CA 92110-3127

97

8. Commander, Naval Security Group Command.
Naval Security Group Headquarters
9800 Savage Road
Suite 6585
Fort Meade, MD 20755-6585

9. Mr. George Bieber
Defense Information Systems Agency
Center for Information Systems Security
5113 Leesburg Pike, Suite 400
Falls Church, VA 22041-3230

10. Mr. Jim Throneberry
N643
Presidential Tower 1
2511 South Jefferson Davis Highway
Arlington, VA 22202

11. Mr. John Mildner
Director of Technical Operations
Code 72A
SPA WAR Systems Center Charleston
P.O. Box 190022
North Charleston, SC 29419

12. John Scott Robin
9129 Sharee Place
Denham Springs, LA 70726

98

